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Summary
Background Accurate prediction of tumour response to neoadjuvant chemoradiotherapy enables personalised 
perioperative therapy for locally advanced rectal cancer. We aimed to develop and validate an artificial intelligence 
radiopathomics integrated model to predict pathological complete response in patients with locally advanced rectal 
cancer using pretreatment MRI and haematoxylin and eosin (H&E)-stained biopsy slides.

Methods In this multicentre observational study, eligible participants who had undergone neoadjuvant 
chemoradiotherapy followed by radical surgery were recruited, with their pretreatment pelvic MRI (T2-weighted 
imaging, contrast-enhanced T1-weighted imaging, and diffusion-weighted imaging) and whole slide images of 
H&E-stained biopsy sections collected for annotation and feature extraction. The RAdioPathomics Integrated 
preDiction System (RAPIDS) was constructed by machine learning on the basis of three feature sets associated with 
pathological complete response: radiomics MRI features, pathomics nucleus features, and pathomics 
microenvironment features from a retrospective training cohort. The accuracy of RAPIDS for the prediction of 
pathological complete response in locally advanced rectal cancer was verified in two retrospective external validation 
cohorts and further validated in a multicentre, prospective observational study (ClinicalTrials.gov, NCT04271657). 
Model performances were evaluated using area under the curve (AUC), sensitivity, specificity, positive predictive 
value (PPV), and negative predictive value (NPV).

Findings Between Sept 25, 2009, and Nov 3, 2017, 303 patients were retrospectively recruited in the training cohort, 
480 in validation cohort 1, and 150 in validation cohort 2; 100 eligible patients were enrolled in the prospective study 
between Jan 10 and June 10, 2020. RAPIDS had favourable accuracy for the prediction of pathological complete 
response in the training cohort (AUC 0·868 [95% CI 0·825–0·912]), and in validation cohort 1 (0·860 [0·828–0·892]) 
and validation cohort 2 (0·872 [0·810–0·934]). In the prospective validation study, RAPIDS had an AUC of 0·812 
(95% CI 0·717–0·907), sensitivity of 0·888 (0·728–0·999), specificity of 0·740 (0·593–0·886), NPV of 0·929 
(0·862–0·995), and PPV of 0·512 (0·313–0·710). RAPIDS also significantly outperformed single-modality prediction 
models (AUC 0·630 [0·507–0·754] for the pathomics microenvironment model, 0·716 [0·580–0·852] for the 
radiomics MRI model, and 0·733 [0·620–0·845] for the pathomics nucleus model; all p<0·0001).

Interpretation RAPIDS was able to predict pathological complete response to neoadjuvant chemoradiotherapy based 
on pretreatment radiopathomics images with high accuracy and robustness and could therefore provide a novel tool 
to assist in individualised management of locally advanced rectal cancer.
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Introduction
Neoadjuvant chemoradiotherapy followed by total 
mesorectal excision and adjuvant chemotherapy is a 
standard therapeutic regimen for patients with locally 
advanced rectal cancer, and induces substantial tumour 
downsizing and downstaging.1 15–27% of patients with 
locally advanced rectal cancer reach a pathological 

complete response with no residual tumour cells detected 
in the resected specimen, which is associated with 
favourable survival.2 These patients might benefit from 
organ-preserving and function-preserving strategies, such 
as local excision and watch and wait.3 Identifying patients 
with high sensitivity to chemoradiation who could 
potentially achieve a pathological complete response, and 
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offering them standard (or intensified) neoadjuvant 
chemoradiotherapy, could therefore improve long-term 
survival and quality of life. By contrast, for patients who 
would not respond well to chemoradiation and would not 
be predicted to have a pathological complete response, 
neoadjuvant chemoradiotherapy represents an alternative 
treatment for tumour downsizing to render unresectable 
tumours operable; however, the toxicity of intensified 
therapy should be considered. A reliable approach to 
predict pathological complete response before the 
administration of neoadjuvant chemoradiotherapy is 
therefore urgently required for personalised perioperative 
treatment in patients with locally advanced rectal cancer.

Previous efforts have been made to explore serological 
or genetic biomarkers to predict pathological complete 
response; however, such biomarkers have not been 
applied in clinical practice because they are costly and 
have not been prospectively validated.4 Over the past 
decade, substantial progress has been made in machine 
learning in medicine, particularly with regard to 
computer-aided screening and triage, precision 
diagnosis, and decision support.5,6 In 2017, we reported 
that radiomics (ie, extraction of high-throughput 

quantitative data from medical images)7 could predict 
pathological complete response with high accuracy in 
patients with locally advanced rectal cancer using MRI 
combined with clinicopathological factors.8 Studies have 
also shown that radiomics can enable preoperative 
prediction of lymph node metastasis and survival 
outcomes to optimise surgical decisions and personalise 
treatment.9,10 However, the clinical applicability of these 
radiomics studies was limited by potential risks of 
overfitting due to small sample sizes or low reproducibility 
due to an absence of prospective validation.

Emerging evidence has shown that histopathology 
coupled with machine learning can aid in genotype 
classification, risk stratification, and outcome 
prediction.11–13 These studies showed that digital pathology 
can provide information reflective of molecular 
characteristics or genetic patterns, which could comple
ment tumour heterogeneity and augment the predictive 
power of existing models. In a preliminary study, we 
confirmed that integration of radiomics MRI and biopsy 
slides enhanced the prediction of tumour regression 
grade to neoadjuvant chemoradiotherapy in patients with 
locally advanced rectal cancer.14 However, these results 

Research in context

Evidence before this study
We searched PubMed from database inception to Dec 31, 2018, 
for publications on artificial intelligence-based methods to 
predict tumour response to neoadjuvant chemoradiotherapy for 
locally advanced rectal cancer. We used the search terms “artificial 
intelligence” or “machine learning” or “deep learning”, 
“radiomics”, “histology” or “pathology”, and “prediction”, 
“response”, and “rectal cancer”, without language restrictions. We 
found 38 original studies that applied radiomics analysis to 
predict pathological complete response or related attributes, 
mostly based on MRI, highlighting the potential association 
between radiomics features and tumour chemoradiosensitivity. 
Despite encouraging preliminary results, the clinical applicability 
of these methods remains  unclear because of the retrospective 
nature, small sample size, and inadequate validation of these 
studies. Moreover, the absence of publicly available algorithm 
codes has undermined the transparency and reproducibility of 
these prediction systems. Eight original studies were identified to 
report the prognostic value or molecular classifier function of 
pathology images using deep learning algorithms in locally 
advanced rectal cancer, suggesting that data from histology slides 
could potentially be used as a predictor of tumour response to 
neoadjuvant chemoradiotherapy in rectal cancer. However, most 
of these artificial intelligence-related studies focused on features 
extracted from only one type of medical image, which is likely to 
have underestimated some aspects of tumour biology. To our 
knowledge, no studies have prospectively validated the potential 
benefits of combining radiomics and pathomics to enhance the 
prediction performance of artificial intelligence models for the 
prediction of pathological complete response in rectal cancer.

Added value of this study
In this multicentre observational study, we developed and 
validated the RAdioPathomics Integrated preDiction System 
(RAPIDS) to predict pathological complete response to 
neoadjuvant chemoradiotherapy in patients with locally 
advanced rectal cancer using pretreatment images. RAPIDS was 
constructed by machine learning on the basis of integrated 
features extracted from pretreatment MRI (T2-weighted 
imaging, contrast-enhanced T1-weighted imaging, and diffusion-
weighted imaging) and whole slide images of haematoxylin and 
eosin-stained biopsy sections. RAPIDS was able to identify 
patients who could potentially achieve a pathological complete 
response, and significantly outperformed conventional single-
scale prediction models. The predictive performance of RAPIDS 
was validated in a multicentre, prospective observational study, 
highlighting the robustness and generalisability of RAPIDS.

Implications of all the available evidence
RAPIDS could potentially be implemented in clinical practice to 
predict whether individual patients will achieve a pathological 
complete response to neoadjuvant chemoradiotherapy before 
its administration, and to enable personalised perioperative 
management for patients with locally advanced rectal cancer. In 
clinical practice, such an approach could optimise therapeutic 
benefits for patients with the potential to achieve a 
pathological complete response and protect patients without 
the potential to achieve a pathological complete response from 
excessive treatment-related toxicity. Additionally, RAPIDS could 
serve as a prognostic surrogate for survival outcomes in 
patients with locally advanced rectal cancer.
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required further optimisation and prospective validation 
in multicentre datasets to verify the reproducibility of 
this strategy in clinical practice.

In this study, we aimed to develop and validate an 
artificial intelligence RAdioPathomics Integrated 
preDiction System (RAPIDS) for the prediction of 
pathological complete response to neoadjuvant chemo
radiotherapy in patients with locally advanced rectal 
cancer using pretreatment MRI and haematoxylin and 
eosin (H&E)-stained biopsy slides.

Methods
Study design and participants
This multicentre observational study involved a 
retrospective study for the development of RAPIDS, 
retrospective validation in two external cohorts, and a 
prospective validation study to assess the generalisability 
and clinical applicability of the system (figure 1).

To develop RAPIDS, patients with locally advanced 
rectal cancer were retrospectively recruited from the 
clinical database of the Sixth Affiliated Hospital of Sun 
Yat-sen University (Guangzhou, China) and served as the 
training cohort. For external validation, two independent 
cohorts were consecutively enrolled from Sun Yat-sen 
University Cancer Center (Guangzhou, China) and 
Yunnan Cancer Hospital (Kunming, China). Finally, to 
assess the applicability of RAPIDS in clinical practice, a 
multi-institutional, prospective observational study was 
conducted. For the prospective validation study, eligible 
patients were prospectively recruited from the Sixth 
Affiliated Hospital of Sun Yat-sen University, Yunnan 
Cancer Hospital, Sir Run Run Shaw Hospital of Zhejiang 
University (Hangzhou, China), and Nanfang Hospital of 
Southern Medical University (Guangzhou, China). 

For the retrospective studies, all eligible participants 
had locally advanced rectal cancer (clinical tumour stage 
3-cT4 with clinical node stage 0-cN2, or extramural 
venous invasion positive, or any cT with cN1-2, or lateral 
node positive, without distant metastasis) and had been 
previously treated with standard neoadjuvant chemo
radiotherapy (delivered at 50 Gy [gross tumour target 
volume] and 45 Gy [clinical target volume] in 25 fractions, 
with concurrent 5-fluorouracil-based chemotherapy 
orally or intravenously) followed by total mesorectal 
excision surgery. For the prospective study, eligible 
patients had locally advanced rectal cancer under the 
same standard as the retrospective study, and would be 
receiving a standard neoadjuvant chemoradiotherapy. 
The full inclusion and exclusion criteria for each cohort 
are described in the appendix (pp 2–3). Images of 
pretreatment MRI and H&E-stained biopsy slides and 
basic clinicopathological information were retrieved and 
applied to manual segmentation of regions of interest 
using a standard pipeline as described in the 
appendix (pp 3–4, 12).

This study was conducted in accordance with the 
Declaration of Helsinki and was approved by the ethics 

committee of the Sixth Affiliated Hospital of Sun Yat-sen 
University (retrospective study approval 2019ZSLYEC-169; 
prospective study approval 2020ZSLYEC-009). The 
requirements for informed consent for both retrospective 
and prospective studies were waived because of the 
observational design; however, each participant had 
provided written informed assent for the Collection and 
Application of Clinical Sample and Medical Data certified 
and approved by the ethics committee of the Sixth 
Affiliated Hospital of Sun Yat-sen University on their 
hospital admission. 

The study protocol (appendix pp 33–53) was designed 
according to the Transparent Reporting of a multivariable 
prediction model for Individual Prognosis or Diagnosis 
(TRIPOD) statement specific to machine learning,15 and 
the findings were reported using the SPIRIT-AI and 
CONSORT-AI extension guidelines.16,17

Model development
RAPIDS was constructed through the integration of 
radiomic and pathomic signatures in the training cohort. 
2106 radiomics MRI features were extracted from the 
segmented tumour regions of interest of three sequences 
of MRI data, including axial high-resolution T2-weighted 
imaging, contrast-enhanced T1-weighted imaging, and 
diffusion weighted imaging, using Pyradiomics (version 
2.1.1; appendix pp 22–24).18 Additionally, 770 pathomics 
tumour nucleus features were extracted from whole slide 
imaging of biopsies using CellProfiler19 and 220 pathomics 
microenvironment features were distilled using the 
VGG-19 convolutional neural network.20 Details about 
feature extraction are provided in the appendix (pp 4–6).

Subsequent feature selection identified three optimal 
feature sets that had significant associations with patho
logical complete response, including nine radiomics MRI, 
12 pathomics nucleus, and 18 pathomics micro
environment features (appendix pp 25–26), which were 
further applied to train distinct single-scale prediction 
models (radiomics MRI [rMRI], pathomics nucleus, and 
pathomics microenvironment models) using the support 
vector machine method. The prediction signatures gen
erated were defined as a new feature set and further used 
to develop RAPIDS (appendix pp 6–7). The output of 
RAPIDS was a binary prediction of pathological complete 
response to neoadjuvant chemoradiotherapy, defined as 
predicted pathological complete response or no predicted 
pathological complete response. For comparisons, dual-
modality prediction models, which incorporated pair 
feature sets (rMRI and pathomics nucleus; rMRI and 
pathomics microenvironment; pathomics microenviron
ment and pathomics nucleus), were also constructed using 
a similar method; full descriptions of feature selection and 
model construction are provided in the appendix (pp 6–7).

Model validation
To generalise the clinical applicability of RAPIDS, we 
did a multicentre, prospective observational study to 

See Online for appendix
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validate predictive performance. From Jan 10 to 
June 10, 2020, RAPIDS was installed at the Key 
Laboratory of Molecular Imaging, Institute of 
Automation, Chinese Academy of Sciences (Beijing, 
China) as a cloud-based platform to predict pathological 
complete response in patients with locally advanced 

rectal cancer. A multidisciplinary workflow was set up as 
follows: (1) newly diagnosed patients were prospectively 
recruited, (2) pelvic MRI and endoscopic biopsy were 
performed 1–2 weeks before initiating neoadjuvant 
chemoradiotherapy and the images were uploaded to 
RAPIDS, (3) a team of oncologists evaluated image 

Figure 1: Workflow of the study
Images of pretreatment MRI images and biopsy haematoxylin and eosin-stained slides were retrospectively retrieved and segmented for feature extraction. After feature evaluation and modelling, 
three sets of signatures (rMRI, pNUC, and the pMENV) were generated and further used to construct the RAPIDS. The performance of RAPIDS in predicting pathological response (ie, pCR vs non-pCR) 
before administration of neoadjuvant chemotherapy was validated in two external retrospective cohorts and a multicentre, prospective observational clinical trial (NCT04271657). CE-T1WI=contrast-
enhanced T1 weighted imaging. DWI=diffusion-weighted imaging. nCRT=neoadjuvant chemoradiotherapy. pCR=pathological complete response. pMENV=pathomics microenvironment. 
pNUC=pathomics tumour nucleus. RAPIDS=RAdioPathomics Integrated preDiction System. RFE=recursive feature elimination. rMRI=radiomics MRI. ROC=receiver operating characteristic. ROI=region 
of interest. SVM=support vector machines. T2WI=T2 weighed imaging.
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quality and segmented the tumour regions of interest, 
(4) RAPIDS generated prediction labels (predicted 
achievement of pathological complete response vs 
predicted lack of pathological complete response) for 
individual patients based on the input segmented 
images, (5) physicians and enrolled participants were 
masked to the prediction results and patients underwent 
standard neoadjuvant chemoradiotherapy followed by 
total mesorectal excision, and (6), on completion of 
surgery, the pathological report served as the gold 
standard to evaluate RAPIDS.

Statistical analysis
To assess the model’s performance for the prediction of 
pathological complete response, we used area under the 
curve (AUC), sensitivity, specificity, positive predictive 
value (PPV), and negative predictive value (NPV). We 
calculated the 95% CIs for these performance measures 
using bootstrapping (1000 bootstrap intervals). We used 
the DeLong test, net reclassification improvement test, 
and integrated discrimination improvement (IDI) test to 
estimate model performance in identifying pathological 

complete response individuals, and the Akaike infor
mation criterion test was used to evaluate the risk of 
model overfitting due to input redundancy. Kaplan-Meier 
analysis and log-rank tests were applied to assess survival 
outcomes among subgroups with pathological complete 
response or incomplete response, and we used Cox 
multivariate analysis to calculate hazard ratios with 
95% CIs to confirm prognostic values of distinct 
variables.

Quantitative statistics were presented as mean (SD) or 
median (IQR). Continuous variables were compared 
using Student’s t test or Wilcoxon signed-rank tests, and 
categorical variables were compared using the χ² test or 
Fisher’s exact test. All statistical analysis was two-sided, 
and p values of less than 0·05 indicated statistical 
significance. All statistical analysis was performed using 
SPSS (version 25.0), R studio (version 3.1.0) installed 
with pROC, Akaike information criterion, and 
PredictABEL packages, or Python (version 3.6.5) with the 
scikit-learn package (version 0.21.3).

The prospective observational study was registered 
with ClinicalTrials.gov, NCT04271657.

Training cohort (n=303) Validation cohort 1 (n-480) Validation cohort 2 (n=150) Prospective validation cohort 
(n=100)

pCR
(n=85)

non-pCR
(n=218)

p value pCR
(n=106)

non-pCR
(n=374)

p value pCR 
(n=30)

non-pCR
(n=120)

p value pCR
(n=23)

non-pCR
(n=77)

p value

Age 0·24 0·93 0·41 0·22

≤55 years 47/151 (31%) 104/151 (69%) 51/229 (22%) 178/229 (78%) 15/65 (23%) 50/65 (77%) 12/39 (31%) 27/39 (69%)

>55 years 38/152 (25%) 114/152 (75%) 55/251 (22%) 196/251 (78%) 15/85 (18%) 70/85 (82%) 11/61 (18%) 50/61 (82%)

Sex 0·99 0·95 0·0090 0·097

Male 60/214 (28%) 154/214 (72%) 73/316 (23%) 243/316 (77%) 14/100 (14%) 86/100 (86%) 14/76 (18%) 62/76 (82%)

Female 25/89 (28%) 64/89 (72%) 33/164 (20%) 131/164 (80%) 16/50 (32%) 34/50 (68%) 9/24 (38%) 15/24 (62%)

Clinical T stage 0·056 0·93 0·072 0·61

cT1 0/0 0/0 0/2 (0%) 2/2 (100%) 0/0 0/0 0/0 0/0

cT2 7/11 (64%) 4/11 (36%) 3/17 (18%) 14/17 (82%) 2/3 (67%) 1/3 (33%) 1/3 (33%) 2/3 (67%)

cT3 60/223 (27%) 163/223 (73%) 66/292 (23%) 226/292 (77%) 14/59 (24%) 45/59 (76%) 13/53 (25%) 40/53 (75%)

cT4a 8/35 (23%) 27/35 (77%) 31/144 (22%) 113/144 (78%) 13/86 (15%) 73/86 (85%) 4/29 (14%) 25/29 (86%)

cT4b 10/34 (29%) 24/34 (71%) 6/25 (24%) 19/25 (76%) 1/2 (50%) 1/2 (50%) 5/15 (33%) 10/15 (67%)

Clinical N stage 0·58 0·22 0·039 0·078

cN0 15/52 (29%) 37/52 (71%) 23/78 (29%) 55/78 (71%) 1/30 (3%) 29/30 (97%) 4/7 (57%) 3/7 (43%)

cN1 38/123 (31%) 85/123 (69%) 54/265 (20%) 211/265 (80%) 22/91 (24%) 69/91 (76%) 4/23 (17%) 19/23 (83%)

cN2 32/128 (25%) 96/128 (75%) 29/137 (21%) 108/137 (79%) 7/29 (24%) 22/29 (76%) 15/70 (21%) 55/70 (79%)

Clinical stage 0·080 0·50 0·066 0·084

I 3/4 (75%) 1/4 (25%) 1/4 (25%) 3/4 (75%) 0/0 0/0 0/0 0/0 

IIA 12/44 (27%) 32/44 (73%) 17/57 (30%) 40/57 (70%) 1/21 (5%) 20/21 (95%) 0/0 0/0

IIB 0/3 (0%) 3/3 (100%) 6/19 (32%) 13/19 (68%) 0/8 (0%) 8/8 (100%) 0/0 0/0

IIC 0/0 0/0 0/1 (0%) 1/1 (100%) 0/1 (0%) 1/1 (100%) 0/0 0/0 

IIIA 4/7 (57%) 3/7 (43%) 2/10 (20%) 8/10 (80%) 2/3 (67%) 1/3 (33%) 4/7 (57%) 3/7 (43%)

IIIB 46/157 (29%) 111/157 (71%) 55/289 (19%) 234/289 (81%) 23/96 (24%) 73/96 (76%) 9/44 (20%) 35/44 (80%)

IIIC 20/88 (23%) 68/88 (77%) 25/100 (25%) 75/100 (75%) 4/21 (19%) 17/21 (81%) 10/49 (20%) 39/49 (80%)

Data are n/N (%), unless otherwise stated. The TNM staging system is used to determine the extent of malignant disease on the basis of the primary tumour (T stage), lymph-node involvement (N stage), and 
metastasis (M stage). χ² or Fisher’s exact tests were used to test whether the variable composition varied significantly between patients with a pCR and those without a pCR. pCR=pathological complete response.

Table 1: Patient characteristics
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Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report.

Results
Between Sept 25, 2009, and Nov 3, 2017, 334 patients with 
locally advanced rectal cancer were retrospectively recruited 
from the Sixth Affiliated Hospital of Sun Yat-sen University 
for the training cohort; 527 patients from Sun Yat-sen 
University Cancer Center for validation cohort 1; and 
163 patients from Yunnan Cancer Hospital for the validation 
cohort 2. 31 (9%) of 334 patients in the training cohort, 
47 (9%) of 527 patients in validation cohort 1, and 13 (8%) of 
163 patients in validation cohort 2 were excluded because of 
incomplete neoadjuvant chemoradiotherapy, perioperative 
events of tumour relapse, or unavailability or insufficient 
quality of required images. In total, 933 eligible patients 
were finally included in the retrospective studies: 
303 patients in the training cohort, 480 patients in the 
validation cohort 1, and 150 patients in the validation cohort 
2 (appendix p 11). 85 (28%) of 303 participants in the training 
cohort, 106 (22%) of 480 participants in validation cohort 1, 
and 30 (20%) of 150 participants in validation cohort 2 
achieved a pathological complete response (table 1).

In the prospective study, 115 patients with locally 
advanced rectal cancer were enrolled between Jan 10 and 
June 10, 2020. 15 (13%) of 115 patients did not receive 
neoadjuvant radiotherapy or did not have available 
images of pretreatment MRI or biopsy slides and were 
excluded from the analysis. Thus, 100 eligible patients 
(76 men and 24 women; median age 58·5 years 
[IQR 50–66]) were recruited as the prospective validation 
cohort (table 1). 23 (23%) of 100 participants in the 
prospective validation cohort achieved a pathological 
complete response. No significant difference was 
observed in the distribution of patients with pathological 
complete response and patients without pathological 
complete response among different cohorts (appendix 
p 19).

No statistical differences in baseline characteristics 
were identified between patients with pathological 
complete response and patients without pathological 
complete response, with the exception of sex (p=0·009) 
and clinical stage of lymph-node involvement (p=0·039) 
in validation cohort 2 (table 1).

After development in the training cohort, RAPIDS 
accurately predicted pathological complete response in 
validation cohort 1 (AUC 0·860 [95% CI 0·828–0·892]) 
and validation cohort 2 (0·872 [0·810–0·934]). The 
sensitivity of RAPIDS was markedly high in the two 
validation cohorts (0·917–0·950), whereas the specificity 
remained moderate (0·713–0·756). The NPV of RAPIDS 
exceeded 0.9 in all cohorts, whereas the PPV was 
around 0·5 (table 2).

RAPIDS showed superior performance in the 
prediction of pathological complete response compared 
with conventional single-modality prediction models in 
the external validation cohorts (figure 2). Compared with 
RAPIDS, the rMRI model had a marginally lower AUC 
ranging from 0·731 (95% CI 0·682–0·779) to 
0·788 (0·714–0·863), whereas the pathomics micro
environment model had a much lower AUC, ranging 
from 0·643 (0·542–0·743) to 0·656 (0·599–0·712). The 
pathomics nucleus model yielded a higher AUC than 
the other single-modality models (AUC 0·811 
[0·774–0·848] in validation cohort 1; 0·832 [0·764–0·900] 
in validation cohort 2), but was still slightly lower than 
that of RAPIDS (table 2). Even omitting one type of 
feature set would slightly or modestly impair prediction 
performance (appendix p 15). Analysis of receiver 
operating characteristic curves using the DeLong test 
showed that RAPIDS significantly improved AUC for the 
prediction of pathological complete response compared 
with the three single-modality prediction models (all 
p<0·05; appendix p 27).

The improvements in identifying pathological complete 
response of RAPIDS over the single-modality models 
were further confirmed by the net reclassification 
improvement tests (all p<0·05, with the exception of 
comparisons between RAPIDS and the rMRI or pathomics 
nucleus models in validation cohort 2; appendix p 28) and 

Training cohort Validation cohort 1 Validation cohort 2 Prospective 
validation cohort

RAPIDS

AUC 0·868 (0·825–0·912) 0·860 (0·828–0·892) 0·872 (0·810–0·934) 0·812 (0·717–0·907)

Sensitivity 0·820 (0·722–0·918) 0·950 (0·884–0·999) 0·917 (0·806–0·999) 0·888 (0·728–0·999)

Specificity 0·816 (0·729–0·903) 0·713 (0·623–0·802) 0·756 (0·639–0·873) 0·740 (0·593–0·886)

PPV 0·637 (0·517–0·757) 0·502 (0·421–0·583) 0·474 (0·315–0·633) 0·512 (0·313–0·710)

NPV 0·909 (0·866–0·952) 0·972 (0·945–0·999) 0·954 (0·918–0·991) 0·929 (0·862–0·995)

rMRI model

AUC 0·742 (0·678–0·806) 0·731 (0·682–0·779) 0·788 (0·714–0·863) 0·716 (0·580–0·852)

Sensitivity 0·612 (0·389–0·834) 0·921 (0·859–0·983) 0·915 (0·799–0·999) 0·711 (0·454–0·968)

Specificity 0·786 (0·570–0·999) 0·519 (0·438–0·600) 0·591 (0·446–0·736) 0·764 (0·550–0·978)

PPV 0·552 (0·365–0·739) 0·366 (0·307–0·425) 0·361 (0·247–0·475) 0·483 (0·242–0·723)

NPV 0·829 (0·770–0·889) 0·947 (0·914–0·979) 0·964 (0·927–0·999) 0·866 (0·780–0·951)

Pathomics nucleus model

AUC 0·814 (0·749–0·858) 0·811 (0·774–0·848) 0·832 (0·764–0·900) 0·733 (0·620–0·845)

Sensitivity 0·734 (0·553–0·914) 0·937 (0·882–0·993) 0·888 (0·767–0·999) 0·868 (0·721–0·999)

Specificity 0·757 (0·575–0·939) 0·667 (0·598–0·735) 0·762 (0·659–0·864) 0·715 (0·613–0·818)

PPV 0·547 (0·403–0·691) 0·458 (0·388–0·529) 0·465 (0·314–0·616) 0·468 (0·308–0·629)

NPV 0·872 (0·808–0·936) 0·965 (0·941–0·989) 0·947 (0·906–0·987) 0·918 (0·853–0·984)

Pathomics microenvironment model

AUC 0·680 (0·615–0·745) 0·656 (0·599–0·712) 0·643 (0·542–0·743) 0·630 (0·507–0·754)

Sensitivity 0·628 (0·362–0·895) 0·768 (0·609–0·928) 0·887 (0·653–0·999) 0·740 (0·397–0·999)

Specificity 0·679 (0·404–0·954) 0·542 (0·380–0·704) 0·430 (0·175–0·685) 0·559 (0·163–0·956)

PPV 0·454 (0·303–0·604) 0·338 (0·271–0·405) 0·271 (0·154–0·389) 0·342 (0·180–0·505)

NPV 0·819 (0·749–0·888) 0·878 (0·826–0·930) 0·913 (0·843–0·982) 0·846 (0·745–0·948)

Data are mean (95% CI). AUC=area under the curve. NPV=negative predictive value. PPV=positive predictive value. 
RAPIDS=RAdioPathomics Integrated preDiction System. rMRI=radiomics MRI. 

Table 2: Prediction performance of RAPIDS compared with single-modality models
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IDI tests (all p<0·0001, with the exception of the 
comparison between RAPIDS and the pathomics nucleus 
model in validation cohort 1; appendix p 29).

RAPIDS yielded the lowest Akaike information criterion 
value, indicating that integration of multimodality features 
provided complementary but not redundant power that 
improved prediction performance (appendix p 30).

RAPIDS also showed superior performance for the 
prediction pathological complete response status in the 
multicentre, prospective observational study (figure 3A). 
Among the 46 patients predicted by RAPIDS to have a 
pathological complete response, 21 (46%) had a 
pathologically confirmed pathological complete response. 
Additionally, of the 54 patients predicted by RAPIDS 
to have no pathological complete response, 52 (96%) 
patients were pathologically confirmed as not having a 
pathological complete response (appendix p 16). Overall, 
RAPIDS achieved a favourable AUC (0·812 [95% CI 
0·717–0·907]) in the prospective validation cohort, 
representing a 10% improvement in AUC over the rMRI 
model (0·716, 0·580–0·852), an 8% improvement over 
the pathomics nucleus model (0·733, 0·620–0·845), and 
an 18% improvement over the pathomics micro
environment model (0·630, 0·507–0·754; table 2). Such 
improvements of RAPIDS over the three single-modality 
models were further verified to be statistically significant 
in Student’s t tests (all p<0·0001; appendix p 31). The 
prediction accuracy of RAPIDS was also superior to that 
of the dual-modality models (figure 3B).

RAPIDS maintained a high sensitivity (0·888, 95% CI 
0·728–0·999) and specificity  (0·740, 0·593–0·886) in the 
prospective validation cohort (table 2).

The superior performance of RAPIDS compared with 
single-modality models was confirmed in the net 

reclassification improvement test (with all p<0·05, except 
for the comparison between RAPIDS and the pathomics 
nucleus model; appendix p 28) and IDI test (with all 
p<0·05, appendix p 29).

Median follow-up was 36 months (IQR 23–53) in the 
retrospective training cohort and validation cohort 1 
(n=783). Kaplan-Meier analysis showed that patients 
predicted by RAPIDS to achieve a pathological complete 
response had a favourable overall survival, disease-free 
survival, local recurrence-free survival, and distant 
metastasis-free survival compared with patients predicted 
to have no pathological complete response (all p<0·05; 
appendix p 17), consistent with results for patients with a 
pathologically confirmed complete response (appendix 
p 18). Overall survival was shorter among the false-
negative population (patients with a true pathological 
complete response but who were predicted by RAPIDS to 
not achieve a pathological complete response) than 
among patients with a true pathological complete 
response who were correctly predicted by RAPIDS to 
achieve a pathological complete response (appendix p 17), 
and was similar to that of true-negative patients (patients 
without a pathological complete response who were 
correctly predicted by RAPIDS to not achieve a 
pathological complete response; appendix p 17). 
Multivariate analysis showed that prediction signature of 
RAPIDS was an independent prognostic factor for overall 
survival and disease-free survival for patients with locally 
advanced rectal cancer (appendix p 32).

Discussion
In this study, we established a machine learning-based 
model for early assessment of pathological response to 
neoadjuvant chemoradiotherapy in patients with locally 

Figure 2: Prediction performance of RAPIDS versus single-modality prediction models in the retrospective training and validation cohorts
Receiver operating characteristic curves of predictive performance for pathological complete response in patients with locally advanced rectal cancer among the three 
single-modality prediction models (rMRI, pathomics nucleus, and pathomics microenvironment) and RAPIDS in the training cohort (A), validation cohort 1 (B), and 
validation cohort 2 (C). AUC=area under curve. RAPIDS=RAdioPathomics Integrated preDiction System. rMRI=radiomics MRI.
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advanced rectal cancer by incorporating quantitative 
pretreatment radiomics and pathomics features. RAPIDS 
was accurate in predicting pathological complete 
response with favourable AUC, and high sensitivity, 
specificity, and NPV in two large-scale external validation 
cohorts, and had superior performance to conventional 
single-modality prediction models. The robustness and 
generalisability of RAPIDS were further validated in a 
multicentre, prospective, observational study. Our study 
provided a reliable and reproducible tool to predict 
pathological complete response to neoadjuvant 
chemoradiotherapy before its administration, which 
could enable the clinical implementation of computer-
aided personalised management for patients with locally 
advanced rectal cancer.

Previous studies have identified biomarkers to select 
patients likely to achieve a pathological complete 
response to neoadjuvant chemoradiation, with the aim of 
tailoring treatment.21 For patients expected to achieve a 
pathological complete response, aggressive neoadjuvant 
chemoradiotherapy could then be given to achieve a 
pathological complete response, and watch and wait and 
intensive follow-up strategies could be used to improve 
survival and quality of life.2 We previously developed a 
radiomics signature to predict pathological complete 
response using pretreatment and post-treatment MRI, 
which achieved an AUC close to 0·98 in an independent 
validation cohort.8 Nevertheless, the promising result 
was mainly attributed to post-treatment MRI, which 
provided direct information of tumour regression or 
residual after treatment, and the model could not provide 
an earlier estimation of treatment response to guide the 

administration of neoadjuvant chemoradiotherapy. 
Radiomics nomograms using pretreatment multipara
metric MRI have also been used to successfully predict 
pathological complete response in patients with locally 
advanced rectal cancer (AUC 0·8–0·9).22 However, the 
clinical applicability was unclear since most studies had a 
small sample size without validation in multicentre 
datasets, resulting in potential risks of overfitting. In the 
present study, the single-modality rMRI model achieved 
moderate performance (AUCs <0·8) in a larger 
population (303 patients) than in previous studies, 
suggesting that radiomic-derived data should be 
combined with auxiliary features to achieve a more 
powerful predictive value.7

Histopathology differs from radiographic imaging—
which captures the spatial macrostructure of tumours—by 
providing in-depth microstructural information about 
cellular properties and microenvironmental characteristics 
within local tumour lesions. Aberrant histopathology, such 
as tumour budding and vascular invasion, on colorectal 
cancer slides is a direct reflection of tumour malignancy 
and treatment sensitivity.23,24 Breakthroughs in machine 
learning have further enabled the extraction of quantitative 
information from digital pathological slides that is 
reflective of not only visual abnormalities but also 
underlying genetic patterns or molecular characteristics.25 
Capturing the features of H&E-stained histopathology 
slides using a deep learning algorithm has been shown to 
be capable of predicting genetic mutations (ie, microsatellite 
instability or stability, KRAS mutation, or other molecular 
subtypes),11,26 or survival outcomes for various malig
nancies.12 Consistent with these studies, our pathomics 
nucleus prediction model based on tumour nucleus 
features showed promising performance in the prediction 
of pathological complete response (AUCs >0·8), similar to 
the findings of Yu and colleagues27 who predicted non-
small-cell lung cancer prognosis using automated 
assessment of histopathology image features. Although 
the pathomics microenvironment model had poorer 
accuracy for the prediction of pathological complete 
response than the pathomics nucleus model, the model 
provided complementary information about the tumour 
microenvironment and immune properties associated 
with tumour chemoradiosensitivity, as previously 
reported.28

Hence, the superior prediction performance of 
RAPIDS was probably due to the integration of 
heterogeneous radiomics and pathomics features, which 
comprehensively captured the macro-structural and 
micro-structural characteristics of the tumour. These 
findings are consistent with those of our previous study, 
in which we developed a radiopathomics model to predict 
tumour regression grade for locally advanced rectal 
cancer.14 In the present study, RAPIDS was constructed 
using a modified modelling method with nine rMRI 
features, 12 pathomics nucleus features, and 18 pathomics 
microenvironment features. These selected features 

Figure 3: Prediction performance of RAPIDS versus single-modality and dual-modality prediction models in 
the prospective observational study
(A) RAPIDS versus single-modality prediction models (rMRI, pathomics nucleus, and pathomics microenvironment). 
(B) RAPIDS versus dual-modality prediction models (rMpN, rMpM, and pMpN). AUC=area under curve. 
pMpN=pathomics microenvironment and pathomics nucleus. RAPIDs=RAdioPathomics Integrated preDiction 
System. rMRI=radiomics MRI. rMpM=radiomics MRI and pathomics microenvironment. rMpN=radiomics MRI and 
pathomics nucleus.
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were not redundant but complementary, as shown in the 
heat maps analysis (appendix p 14). Furthermore, an 
Akaike information criterion test confirmed that the 
enhanced discriminatory performance of RAPIDS was 
due to feature integration rather than input redundancy 
(appendix p 30).

The clinical application of artificial intelligence in 
medicine is hindered by issues regarding transparency 
and reproducibility.29 The TRIPOD statement specific to 
machine learning published in 2019, and the SPIRIT-AI 
and CONSORT-AI guidelines published in 2020 describe 
best practices for protocols and reporting to address 
these issues.16,17 According to these guidelines, we 
conducted a multicentre, prospective, validation study 
and found that RAPIDS had robust accuracy for the 
prediction of pathological complete response (AUC 0·812 
[95% CI 0·717–0·907]), suggesting that this artificial 
intelligence system might be generalisable to real-world 
scenarios. To our knowledge, no radiomics or pathomics 
studies have prospectively validated model performance 
in predicting tumour response for rectal cancer. We 
have also shared our methods and algorithm code 
(appendix pp 3–7) to enable the use of RAPIDS elsewhere.

Clinically, RAPIDS has the potential to individually 
assist in decision making for patients with locally 
advanced rectal cancer. Routinely available images of 
pelvic MRI and endoscopic biopsies subjected to RAPIDS 
would output a prediction result (pathological complete 
response vs no pathological complete response). For 
patients predicted to achieve a pathological complete 
response, it would be worthwhile to administer intensive 
neoadjuvant chemoradiotherapy (ie, total neoadjuvant 
therapy)30 to maximise the likelihood of a pathological 
complete response. Especially for patients with low rectal 
cancer that occurs close to the rectum (usually within 
5 cm), the watch and wait strategy is directly associated 
with sphincter sparing and preservation of urinary and 
sexual function. Confirmative examinations such as 
digital rectal examination, endoscopic ultrasound 
examination, and fine needle aspiration for any suspicious 
regions, should be used when an organ-preservation 
strategy is considered for the individuals who could have a 
pathological complete response. For individuals with a 
confirmed clinical complete response, organ-preservation 
strategies with an intensive follow-up are recommended. 
However, if residual tumour cells are detected, neo
adjuvant consolidation chemotherapy or total mesorectal 
excision should be considered. By contrast, for patients 
predicted by RAPIDS to not achieve a pathological 
complete response, modified neoadjuvant chemoradio
therapy with less toxicity and side-effects should be 
considered, since this subgroup of patients is unlikely to 
benefit greatly from neoadjuvant chemoradiotherapy. 
RAPIDS performed well with regard to NPV, suggesting 
that the model reliably identifies individuals without a 
pathological complete response. Few (less than 10% in the 
study) patients with a pathological complete response 

would be misidentified as having a residual tumour and 
an additional suggested surgery. RAPIDS had a relatively 
low PPV compared with NPV in all cohorts. The 
underlying reason might be the disproportionate ratio of 
patients reaching a pathological complete response (20–
28%) versus not reaching a pathological complete 
response (72–80%) in the study, which was consistent 
with the occurrence of pathological complete response in 
the rectal cancer population. However, this low PPV might 
not result in errors in treatment. We found that individuals 
with a true pathological complete response who had been 
predicted by RAPIDS to not achieve a pathological 
complete response had shorter overall survival than those 
correctly predicted to achieve a pathological complete 
response, and had similar survival to patients correctly 
predicted to not achieve a pathological complete response 
(appendix p 17). For these patients, radical surgery 
followed by adjuvant treatment might be beneficial, even 
if no residual tumour is detected in surgery specimens.

Despite promising findings, our study had some 
limitations. First, only high-quality images of MRI and 
biopsy slides were used to train and validate RAPIDS, 
highlighting the need for a standardised pipeline for data 
collection and imaging detection in the future. Second, 
no specific approaches were applied to handle the 
parameter variations derived from the use of different 
scanners at multiple institutions, which might result in 
some inherent bias. However, RAPIDS had satisfactory 
performance across the participating hospitals in the 
prospective study, suggesting the potential for real-world 
implementation. Third, the manual delineation of 
tumour regions of interest is a time-consuming and 
labour-intensive task. Efforts are being made to develop a 
user-friendly, fully automated segmentation system for 
future application. Fourth, no demographic variables 
were included in the models. The predictive power of 
RAPIDS was fully dependent on the integration of 
multimodality images. Inclusion of demographic 
variables might improve model performance, which 
requires further exploration and validation in future 
studies.

In conclusion, we developed RAPIDS, a novel artificial 
intelligence-based model to predict pathological complete 
response to neoadjuvant chemoradiotherapy by 
integrating pretreatment MRI and biopsy whole slide 
images. The performance and generalisability of RAPIDS 
highlighted the potential for application in tailored 
treatment for patients with locally advanced rectal cancer.
Contributors
XW, JT, ZLiu, M-CH, WZ, DRW, PL, and LF designed the study and 
developed the conceptual ideas. JY, ZLi, CL, PX, YH, JZ, XL, XM, YW, 
and YD collected all the input sources and additional data. XL, HC, XP, 
SL, FH, MW, YH, and PX annotated the images. LS, ZLiu, JT, and GY 
implemented the main algorithms and other computational analysis. 
LF, LS, XW, and ZLiu analysed the results. LF, LS, ZLiu, and XW wrote 
the manuscript with suggestions from the coauthors. LF and LS have 
accessed and verified all the data in the study. XW had final 
responsibility for the decision to submit for publication.



Articles

e17	  www.thelancet.com/digital-health   Vol 4   January 2022

Declaration of interests
We declare no competing interests.

Data sharing
For study transparency and reproducibility, research data (ie, de-identified 
participant data and original images of MRI and biopsy haematoxylin 
and eosin-stained slides) and other additional documents (ie, study 
protocol and statistical analysis plan) will be made available at publication 
upon request to the corresponding author. Interested researchers should 
send data access request to wanxbo@mail.sysu.edu.cn. The 
corresponding author will review the requests with other authors for 
consideration. Data sharing will only be available for academic research 
(ie, reference for model parameter, study design), instead of other 
objectives (ie, commercial use). A data use agreement will be required 
before the release of participant data and institutional review board 
approval as appropriate. The algorithm code for the analysis has been 
made publicly available online.

Acknowledgments
This study was supported by the National Natural Science Foundation of 
China (grant numbers 81872188, 81902867, 82001986, 81903152, 
81922040, and 92059103), and the Youth Innovation Promotion 
Association of the Chinese Academy of Sciences (grant number 2019136). 
We thank Yanchun Lv (Sun Yat-sen University Cancer Center, 
Guangzhou, China) for his generous help in quality control of the MRI 
segmentation. With deepest grief and highest reverence, we are grateful 
for the support of Lei Wang, the former vice president of the Sixth 
Affiliated Hospital of Sun Yat-sen University, who dedicated his life to the 
research of colorectal cancer and radiation enteritis. His noteworthy 
contribution to human health and his extraordinary benevolence, 
dauntlessness, and selflessness will be forever engraved on our mind. 
Dear Dr Lei Wang, we miss you.

References
1	 Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet 2019; 

383: 1–40.
2	 Maas M, Nelemans PJ, Valentini V, et al. Long-term outcome in 

patients with a pathological complete response after chemoradiation 
for rectal cancer: a pooled analysis of individual patient data. 
Lancet Oncol 2010; 11: 835–44.

3	 Renehan AG, Malcomson L, Emsley R, et al. Watch-and-wait 
approach versus surgical resection after chemoradiotherapy for 
patients with rectal cancer (the OnCoRe project): a propensity-score 
matched cohort analysis. Lancet Oncol 2016; 17: 174–83.

4	 Ghadimi BM, Grade M, Difilippantonio MJ, et al. Effectiveness of 
gene expression profiling for response prediction of rectal 
adenocarcinomas to preoperative chemoradiotherapy. J Clin Oncol 
2005; 23: 1826–38.

5	 Xiao W, Huang X, Wang JH, et al. Screening and identifying 
hepatobiliary diseases through deep learning using ocular images: 
a prospective, multicentre study. Lancet Digit Health 2021; 3: e88–97.

6	 Huang P, Lin CT, Li Y, et al. Prediction of lung cancer risk at follow-
up screening with low-dose CT: a training and validation study of a 
deep learning method. Lancet Digit Health 2019; 1: e353–62.

7	 Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge 
between medical imaging and personalized medicine. 
Nat Rev Clin Oncol 2017; 14: 749–62.

8	 Liu Z, Zhang XY, Shi YJ, et al. Radiomics analysis for evaluation of 
pathological complete response to neoadjuvant chemoradiotherapy 
in locally advanced rectal cancer. Clin Cancer Res 2017; 23: 7253–62.

9	 Liu Z, Meng X, Zhang H, et al. Predicting distant metastasis and 
chemotherapy benefit in locally advanced rectal cancer. 
Nat Commun 2020; 11: 4308.

10	 Huang YQ, Liang CH, He L, et al. Development and validation of a 
radiomics nomogram for preoperative prediction of lymph node 
metastasis in colorectal cancer. J Clin Oncol 2016; 34: 2157–64.

11	 Kather JN, Pearson AT, Halama N, et al. Deep learning can predict 
microsatellite instability directly from histology in gastrointestinal 
cancer. Nat Med 2019; 25: 1054–56.

12	 Skrede OJ, De Raedt S, Kleppe A, et al. Deep learning for prediction 
of colorectal cancer outcome: a discovery and validation study. 
Lancet 2020; 395: 350–60.

13	 Pantanowitz L, Quiroga-Garza GM, Bien L, et al. An artificial 
intelligence algorithm for prostate cancer diagnosis in whole slide 
images of core needle biopsies: a blinded clinical validation and 
deployment study. Lancet Digit Health 2020; 2: e407–16.

14	 Shao L, Liu Z, Feng L, et al. Multiparametric MRI and whole slide 
image-based pretreatment prediction of pathological response to 
neoadjuvant chemoradiotherapy in rectal cancer: a multicenter 
radiopathomic study. Ann Surg Oncol 2020; 27: 4296–306.

15	 Collins GS, Moons KGM. Reporting of artificial intelligence 
prediction models. Lancet 2019; 393: 1577–79.

16	 Cruz Rivera S, Liu X, Chan AW, et al. Guidelines for clinical trial 
protocols for interventions involving artificial intelligence: the 
SPIRIT-AI extension. Nat Med 2020; 26: 1351–63.

17	 Liu X, Cruz Rivera S, Moher D, et al. Reporting guidelines for 
clinical trial reports for interventions involving artificial 
intelligence: the CONSORT-AI extension. Nat Med 2020; 
26: 1364–74.

18	 van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational 
radiomics system to decode the radiographic phenotype. Cancer Res 
2017; 77: e104–07.

19	 Carpenter AE, Jones TR, Lamprecht MR, et al. CellProfiler: image 
analysis software for identifying and quantifying cell phenotypes. 
Genome Biol 2006; 7: R100.

20	 Kather JN, Krisam J, Charoentong P, et al. Predicting survival from 
colorectal cancer histology slides using deep learning: 
a retrospective multicenter study. PLoS Med 2019; 16: e1002730.

21	 Dayde D, Tanaka I, Jain R, Tai MC, Taguchi A. Predictive and 
prognostic molecular biomarkers for response to neoadjuvant 
chemoradiation in rectal cancer. Int J Mol Sci 2017; 18: E573.

22	 Bulens P, Couwenberg A, Intven M, et al. Predicting the tumor 
response to chemoradiotherapy for rectal cancer: model 
development and external validation using MRI radiomics. 
Radiother Oncol 2020; 142: 246–52.

23	 Ueno H, Ishiguro M, Nakatani E, et al. Prospective multicenter 
study on the prognostic and predictive impact of tumor budding in 
stage II colon cancer: results from the SACURA trial. J Clin Oncol 
2019; 37: 1886–94.

24	 Huh JW, Lee WY, Shin JK, et al. A novel histologic grading system 
based on lymphovascular invasion, perineural invasion, and tumor 
budding in colorectal cancer. J Cancer Res Clin Oncol 2019; 
145: 471–77.

25	 Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and 
artificial intelligence. Lancet Oncol 2019; 20: e253–61.

26	 Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and 
mutation prediction from non-small cell lung cancer histopathology 
images using deep learning. Nat Med 2018; 24: 1559–67.

27	 Yu KH, Zhang C, Berry GJ, et al. Predicting non-small cell lung 
cancer prognosis by fully automated microscopic pathology image 
features. Nat Commun 2016; 7: 12474.

28	 Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location 
of immune cells within human colorectal tumors predict clinical 
outcome. Science 2006; 313: 1960–64.

29	 Haibe-Kains B, Adam GA, Hosny A, et al. Transparency and 
reproducibility in artificial intelligence. Nature 2020; 586: E14–16.

30	 Fokas E, Allgäuer M, Polat B, et al. Randomized phase II trial of 
chemoradiotherapy plus induction or consolidation chemotherapy 
as total neoadjuvant therapy for locally advanced rectal cancer: 
CAO/ArO/AIO-12. J Clin Oncol 2019; 37: 3212–22.

For the algorithm code see 
https://github.com/

StandWisdom/Radiopathomics-
pCR-nCRT

https://github.com/StandWisdom/Radiopathomics-pCR-nCRT
https://github.com/StandWisdom/Radiopathomics-pCR-nCRT
https://github.com/StandWisdom/Radiopathomics-pCR-nCRT
https://github.com/StandWisdom/Radiopathomics-pCR-nCRT

	Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study
	Introduction
	Methods
	Study design and participants
	Model development
	Model validation
	Statistical analysis
	Role of the funding source

	Results
	Discussion
	Acknowledgments
	References


