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Highlights: Impact and implications:
� Optical-flow and deep learning methods were applied to
automatically analyze CEUS videos.

� Multi-type biomarker information was utilized for the non-
invasive diagnostic strategy of ‘from CEUS to Biomarker
to Disease’.

� By integrating CEUS, biomarker and clinical information, we
built a model to classify six types of focal liver lesions.

� Model performance is better than junior CEUS radiologists,
and comparable to senior CEUS/MRI radiologists.

� With model assistance, the performance of junior CEUS
radiologists can be improved to the level of se-
nior radiologists.
https://doi.org/10.1016/j.jhep.2025.01.011
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similar technologies. J. Hepatol. 2025, 83, 426–439
Ultrasound is the most common imaging examination for
screening focal liver lesions (FLLs), but it lacks accuracy for
multi-classification, which is a prerequisite for appropriate
clinical management. Contrast-enhanced ultrasound (CEUS)
offers better diagnostic performance but relies on the experi-
ence of radiologists. We developed a CEUS-based model
(Model-DCB) that can help junior CEUS radiologists to achieve
comparable diagnostic ability as senior CEUS radiologists and
senior MRI radiologists. The combination of an ultrasound de-
vice, CEUS examination and Model-DCB means that even pa-
tients in remote areas can be accurately diagnosed through
examination by junior radiologists.
. All rights are reserved, including those for text and data mining, AI training, and
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Background & Aims: Accurate multi-classification is a prerequisite for appropriate management of focal liver lesions (FLLs).
Ultrasound is the most common imaging examination but lacks accuracy. Contrast-enhanced ultrasound (CEUS) offers better
performance but is highly dependent on operator experience. Therefore, we aimed to develop a CEUS-based artificial intelligence
(AI) model for FLL multi-classification and evaluate its performance in multicenter clinical tests.
Methods: Since January 2017 to December 2023, CEUS videos, immunohistochemical biomarkers and clinical information on
solid FLLs >1 cm in adults were collected from 52 centers to build and test the model. The model was developed to classify FLLs
into six types: hepatocellular carcinoma, hepatic metastasis, intrahepatic cholangiocarcinoma, hepatic hemangioma, hepatic
abscess and others. First, Module-Disease, Module-Biomarker and Module-Clinic were built in training set A and a validation set.
Then, three modules were aggregated as Model-DCB in training set B and an internal test set. Model-DCB performance was
compared with CEUS and MRI radiologists in three external test sets.
Results: In total 3,725 FLLs from 52 centers were divided into training set A (n = 2,088), the validation set (n = 592), training set B
(n = 234), the internal test set (n = 110), and external test sets A (n = 113), B (n = 276) and C (n = 312). In external test sets A, B and
C, Model-DCB achieved significantly better performance (accuracy from 0.85 to 0.86) than junior CEUS radiologists (0.59-0.73), and
comparable performance to senior CEUS radiologists (0.79-0.85) and senior MRI radiologists (0.82-0.86). In multiple subgroup
analyses on demographic characteristics, tumor characteristics and ultrasound devices, its accuracy ranged from 0.79 to 0.92.
Conclusions: CEUS-based Model-DCB provides accurate multi-classification of FLLs. It holds promise for a wide range of pop-
ulations, especially those in remote areas who have difficulty accessing MRI.
Clinical trial: NCT04682886.

© 2025 European Association for the Study of the Liver. Published by Elsevier B.V. All rights are reserved, including those for text and data mining,
AI training, and similar technologies.
Introduction
The liver is one of the organs most prone to lesions in the
human body.1 Common types of focal liver lesions (FLLs)
include hepatocellular carcinoma (HCC), hepatic metastatic
carcinoma (HM), intrahepatic cholangiocarcinoma (ICC), he-
patic hemangioma (HH) and hepatic abscess (HA),2 while rare
types include hepatic adenomas, hepatic lymphomas etc.3

Treatment methods recommended by the guidelines vary
greatly for different FLL types.4,5 For example, even though
HCC and HM are both malignant FLLs, their treatments are
completely different.6,7 Simply distinguishing between benign
and malignant or only capable of identifying one or two types of
FLL is not enough to provide sufficient information to make
correct treatment decisions for the vast majority of patients
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with FLLs. Therefore, FLL diagnosis should shift to precise
multi-classification.

Ultrasound is the most common and easily deployed im-
aging examination for liver disease. It is widely used in the
screening of FLLs due to its convenience, low cost and real-
time results, but its diagnostic capability for FLL is not satis-
factory.8 MRI is widely regarded as the best imaging exami-
nation for the diagnosis of FLLs, offering diagnostic
performance second only to pathology. However, its high cost
and logistical limitations affect its applicability to some extent.
Contrast-enhanced ultrasound (CEUS) can transform conven-
tional ultrasound examination from a "screening" to a "diag-
nostic" approach, and it plays an important role in FLL
diagnosis.9 It has high temporal resolution, which can coher-
ently record the vascular perfusion, hemodynamic
f Automation, Chinese Academy of Sciences, Beijing, 100190,
pital, 28 Fuxing Road, Beijing, 100853, China; (J. Yu), or (P.
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characteristics, and vascular distribution pattern of FLLs, and
provides critical information for multi-classification.10 However,
CEUS still inevitably share some common dilemmas, including
high reliance on experience and reduced diagnostic ability due
to doctor fatigue.11 Additionally, CEUS faces unique challenges
due to its high temporal resolution. A typical CEUS video of FLL
contains thousands of frames, far more than other liver imaging
examinations. The rich information gives CEUS great potential
in terms of diagnostic capabilities,12 but how to accurately and
comprehensively capture key dynamic features related to multi-
type FLL classifications becomes the dilemma beyond the
capabilities of ultrasound radiologists.2

To overcome these challenges, deep learning (DL)-based
artificial intelligence (AI) is considered a promising solution.13 AI
can rapidly analyze and quantify large amounts of information,
accurately discover and learn hidden features that doctors
cannot identify, and objectively perform high-throughput di-
agnoses without feeling tired.14 Various efforts have been made
to develop AI models for FLL classification and have achieved
benchmark-level progress. Kuang et al. constructed a CEUS-
model with an AUC of 0.934 for identifying malignant FLLs in
211 patients.15 Yang et al. constructed an ultrasound-model
with an AUC of 0.913 for identifying hepatic echinococcosis
in 548 patients.16 However, AI models in these studies could
only analyze static ultrasound/CEUS images in isolation and
did not have the ability to coherently analyze dynamic videos.
Moreover, these models only roughly differentiated certain
common types of FLLs, lacking the ability to diagnose
rare types.

Recent studies have revealed that the expression of bio-
markers, such as hepatocyte antigen (Hep), glypican-3 (GPC3),
cytokeratin (CK)7, and CK19, are important references for pa-
thologists to diagnose FLL types.17,18 However, such infor-
mation can only be obtained invasively through liver biopsy or
postoperative immunohistochemistry. We hypothesize that the
biomarker expression at the microscopic level is reflected in the
hidden spatiotemporal features of macroscopic CEUS videos,
and they can be effectively recognized and learned by so-
phisticated DL models. Therefore, by integrating CEUS-based
DL models trained to predict biomarker expression and DL
models trained to directly classify FLLs, we should be able to
further enhance the non-invasive multi-classification of patients
with FLL during their CEUS examinations. However, this hy-
pothesis has not been confirmed by relevant investigations yet.

In this study, we combined the conventional AI strategy of
’from image to FLL’, the new AI strategy of ’from image to
biomarker’, and clinical characteristics to develop multiple
CEUS-based DL models for accurately classifying HCC, HM,
ICC, HH, HA, and other types (OT, including hepatic adenomas,
hepatic lymphomas, focal nodular hyperplasia, neuroendocrine
neoplasm, hepatic sarcoma and hepatic lipoma). Their perfor-
mances were validated and compared in multiple large-sample,
multicenter, prospective patient cohorts. Then, the best one
was compared with CEUS and MRI radiologists, respectively.
Furthermore, their ability to assist CEUS radiologists was
also explored.
Patients and methods
This study was launched on January, 2017 (NCT04682886) and
approved by the ethics committee of the Chinese PLA General
Journal of Hepatology, Augu
Hospital (S2017-046-03). The registration site on ClinicalTrials.
gov is the lead institution of this study, while the other 51 in-
stitutions were registered and approved for ethics at their
respective hospitals. The inclusion criteria were: 1) distinct solid
nodule larger than 1 cm with CEUS video; 2) diagnosed ma-
lignant nodules with pathological confirmation; 3) diagnosed
benign nodules with clinical confirmation, MRI and follow-up.
Detailed diagnostic criteria were shown in the Supplementary
Material. The exclusion criteria were: 1) age less than 18
years; 2) poor CEUS image quality; 3) missing clin-
ical information.

FLLs were classified into six types: HCC, HM, ICC, HH, HA,
and OT. Clinical information of all FLLs were collected,
including age, sex, tumor size, disease history, and serological
index; Biomarker information of partial FLLs were collected,
including Hep, GPC3, CK7 and CK19 (Supplementary Material).

CEUSs from 52 centers were collected to establish the AI
model. From January 2017 to December 2022, cases from
centers 1-36 were randomly divided into training set A and a
validation set at a ratio of 4:1. Cases from centers 37-49 were
all assigned to training set B. Cases from centers 50, 51 and 52
were assigned to the internal test set, and external test sets A
and B, respectively. Since January 2023 to December 2023,
cases from all 52 centers constituted the prospective external
test set C (Fig. 1).

CEUS collection protocol

A bolus injection of 2 ml of SonoVue (Bracco SpA, Milan, Italy)
was injected via the antecubital vein, followed by a 5 ml saline
flush. CEUS videos were recorded continuously for arterial,
portal, and delayed phases. In total 226 US devices from nine
major manufacturers were used in different centers (Table S1).

CEUS processing

The annotation of FLLs was performed using a combination of
manual initiation and automatic segmentation. A radiologist
(eight-year CEUS experience) was invited to outline the lesion
border on the frame with the largest tumor size in arterial phase,
which was the only manual initiation. All subsequent steps of
the process were automated. A rectangular box minimizing the
coverage of this manually outlined region was then generated
and expanded 20 pixels outward as the region of interest (ROI).
After that, similar ROIs were generated on all frames of the
CEUS video, so that the time-intensity curve (TIC) based on
these ROIs was obtained (Fig. S1).

For each video, 80 frames were collected evenly from the
beginning to the peak of TIC curve, and 20 frames would be
collected evenly from the peak to the end (Fig. S1). Then, a
specially designed two-stream model was used to extracted
spatial and temporal information from these 100 ROIs (Sup-
plementary Material and Fig. S2).19 Each model included the
spatial branch and the temporal branch (Fig. 2A). The spatial
branch extracted spatial features through ResNet34.20 The
temporal branch combined the pixel displacement between
two adjacent frames into optical flow maps,21 and then
extracted temporal features through ResNet18.20 We found
that if we downsampled each CEUS video into 100 frames, the
corresponding optical flow changes in adjacent frames were
too small, which misled model training, consumed excessive
computing power, and sometimes caused our computing
st 2025. vol. 83 j 426–439 427
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Since January 2017 to December 2023
3,522 patients with 3,942 FLLs from 52 centers

Inclusion criteria
1) Solid nodules larger than 1 cm with CEUS
2) Diagnosed malignant FLLs with pathological 
confirmation
3) Diagnosed benign FLLs with clinical confirmation, 
MRI and follow-up  

Exclusion criteria

 

1) Age less than 18 years, FLL n = 9;

2) Poor CEUS image quality, FLL n = 33;
2.1) CEUS video less than 2 minutes
2.2) Suffered from severe shaking

3) Missing clinical information, FLL n = 175; 180 patients 
with 217 FLLs were excluded.

Eligible data
3,342 patients with 3,725 FLLs

Validation
 set

512 patients
with 592 FLLs:
HCC, n = 315
HM, n = 169
ICC, n = 36
HH, n = 34
HA, n = 38

181 FLLs with
biomarker:

Hep, n = 135
GPC3, n = 109
CK7, n = 130
CK19, n = 123

Validation
 set

1,923 patients
with 2,088 FLLs:
HCC, n = 1,122

HM, n = 643
ICC, n = 126
HH, n = 103
HA, n = 94

624 FLLs with
biomarker:

Hep, n = 499
GPC3, n = 436
CK7, n = 513
CK19, n = 550

Retrospective data
Since January 2017 to December 2022

3,085 patients with 3,413 FLLs from 52 centers 

Prospective data
Since January 2023 to December 2023

257 patients with 312 FLLs from 52 centers 

257 patients
with 312 FLLs:
HCC, n = 134

HM, n = 72
ICC, n = 28
HH, n = 31
HA, n = 25
OT, n = 22

External
test set C

Center 1-36

External
test set A

107 patients
with 113 FLLs:
HCC, n = 56
HM, n = 23
ICC, n = 6
HH, n = 10
HA, n = 11
OT, n = 7

Center 51

External
test set B

252 patients
with 276 FLLs:
HCC, n = 120

HM, n = 67
ICC, n = 16
HH, n = 31
HA, n = 23
OT, n = 19

Center 52

Randomly divided

Center 1-52

Training
set B

190 patients
with 234 FLLs:
HCC, n = 128

HM, n = 45
ICC, n = 15
HH, n = 12
HA, n = 18
OT, n = 16

Center 37-49

Internal
test set

101 patients
with 110 FLLs:
HCC, n = 60
HM, n = 24
ICC, n = 7
HH, n = 4
HA, n = 8
OT, n = 7

Center 50

Fig. 1. Flowchart of data collection and seven cohort division. Since January 2017 to December 2022, cases from centers 1-36 were randomly divided into training
set A and a validation set. Cases from centers 37-49 were all divided into training set B. Cases from center 50, 51, and 52 were respectively divided into an internal test
set, and external test sets A and B. Since January 2023 to December 2023, cases from all 52 centers constituted the prospective external test set C. CEUS, contrast-
enhanced ultrasound; FLLs, focal liver lesions; HA, hepatic abscess; HCC, hepatocellular carcinoma; HH, hepatic hemangioma; HM, hepatic metastasis; ICC,
intrahepatic cholangiocarcinoma; OT, other type.

Intelligent diagnosis for focal liver lesions
system to crash (two RTX 4090 Ti graphics cards (NVIDIA, USA)
for experiments). Therefore, we compared the performances of
downsampling the optical flow map to 20, 15, 10, and 5 frames
per video, and finally selected 10 frames per video as the model
input to ensure a balance between inference efficiency, clas-
sification accuracy, and system stability (Fig. S3).
Two-stage model construction

In the first stage, three modules were built, namely Module-
Disease, Module-Biomarker, and Module-Clinic (Fig. 2B).
LSTM (long short-term memory) was used to integrate the
extracted features from the spatial and temporal branches to
develop Module-Disease and Module-Biomarker.22 Prediction
probability was the output after adaptive weighting. We
428 Journal of Hepatology, Augu
adopted the weighted sum of spatial branch classification loss,
temporal branch classification loss, and final classification loss
as loss functions. Minority class weighting was used to over-
come imbalances caused by class distributions. Detailed
description, function definitions and related formulas are pro-
vided in the Supplementary Material.

In Module-Disease, we compared two model construction
strategies. Strategy A was to directly build the multi-
classification model. Strategy B adopted the distributed
training approach and aggregated multiple binary-classification
sub-models to build the multi-classification model. Five sub-
models were trained, including: HCC vs. non-HCC, HM vs.
non-HM, ICC vs. non-ICC, HH vs. non-HH, and HA vs. non-HA.
In Module-Biomarker, four binary-classification sub-models
were developed, including: Hep-positive vs. Hep-negative,
st 2025. vol. 83 j 426–439
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Fig. 2. Experimental design flowchart. (A) In the CEUS processing stage, we extracted downsampled key-frames from a CEUS video based on its TIC, generated the
optical flowmap from this keyframe sequence, and integrated hidden features from both spatial and temporal branches by LSTM. This strategy was applied to construct
the Module-Disease and Module-Biomarker models, respectively. (B) In the first construction stage, three modules were developed. The Module-Disease were obtained
by comparing direct classification of the five FLL types (Strategy A) with aggregating multiple binary-classification sub-models (Strategy B). The Module-Biomarker
contained four trained binary-classification sub-models for four biomarkers. The Module-Clinic were built by selecting key clinical information with high correlation to
FLLs. (C) In the second construction stage, four multi-classification models, namely Model-D, Model-DC, Model-DB, and Model-DCB, were built, and each one was
composed of corresponding modules through multilayer perceptron. Their performances were compared, and the best one was selected for the nest stage. (D) In the
clinical testing stage, we compared the AI model performance with six CEUS radiologists (three junior radiologists and three senior radiologists) and two MRI senior
radiologists. The cooperation between CEUS radiologists and themodel was explored. The performances of themodel inmultiple subgroupswere also evaluated. CEUS,
contrast-enhanced ultrasound; LSTM, long short-termmemory; FLLs, focal liver lesions; HA, hepatic abscess; HCC, hepatocellular carcinoma; HH, hepatic hemangioma;
HM, hepatic metastasis; ICC, intrahepatic cholangiocarcinoma; OT, other type; TIC, time-intensity curve. (This figure appears in color on the web.)
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GPC3-positive vs. GPC3-negative, CK7-positive vs. CK7-
negative, and CK19-positive vs. CK19-negative. In Module-
Clinic, all collected clinical information was filtered by the cor-
relation coefficient of FLL type (Supplementary Material).

In the second stage, the corresponding modules were
combined to build four multi-classification models through
multilayer perceptron (MLP),23 namely Model-D, Model-DC,
Model-DB, and Model-DCB, for performance comparison
(Fig. 2C). Moreover, we added OT cases as a complementary
classification in this stage, so that six types of FLL were clas-
sified (five common types + OT). This was achieved by
leveraging MLP without training an OT vs. non-OT sub-model,
but setting OT as an extra classification outside the original five
Journal of Hepatology, Augu
common types in MLP (Fig. S4). The basic rule was that if a
case was predicted to have low probabilities for all five FLL
types, it would be classified as OT. This was because the
number of OT cases was bound to be too small to support the
CEUS video-based sub-model training.
Model evaluation

Model performance was evaluated in four test sets through
multi-classification index, subgroup analysis (sex, age, tumor
size, etiology, cirrhosis, fatty liver, and ultrasound device
manufacturer), and six-type radar chart analysis. We also
conducted subgroup analyses on cases with pathological
st 2025. vol. 83 j 426–439 429
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diagnosis of FLLs, pathological diagnosis of cirrhosis, and
pathological diagnosis of fatty liver. In the external test sets A,
B, and C, we compared model performance with six CEUS
radiologists (three junior and three senior radiologists) and two
senior MRI radiologists (Table S2).24 All radiologists were blin-
ded to the FLL diagnoses. The illustration of CEUS imaging
findings used for FLL diagnosis by CEUS radiologists were
shown in Fig. S5. After a 1-month washout period, we evalu-
ated the performance of these CEUS radiologists with model
assistance and compared it with their performance 1 month
earlier (Fig. 2D). We also recorded the changes in diagnosis
time and diagnostic confidence of CEUS radiologists before
and after model assistance.

Model visualization

To generate a visual explanation of the model diagnostic pro-
cess, we converted feature maps into pseudo-colored maps
using the OpenCV method through Grad-CAM (Gradient
Weighted Class Activation Mapping), which displays the pixels
in the ROIs that provide the greatest contribution to the clas-
sification output.25 In addition, we also displayed the disease
classification probabilities from Module-Disease and biomarker
probabilities from Module-Biomarker.

Model generalization and robustness experiment

Since the study population was patients with FLL who under-
went CEUS, the FLL distribution did not align with the natural
FLL distribution. We performed a generalizability experiment for
the model by simulating three clinical scenarios. First, health
check-up center (a lower proportion of malignant tumors and a
higher proportion of benign tumors, 1:9); second, hospital
outpatient clinic (an equal proportion of malignant and benign
tumors, 5:5); three, hospital inpatient ward (a higher proportion
of malignant tumors and a lower proportion of benign tumors,
9:1). We randomly selected cases from three external test sets
according to the above ratios to form the following cohorts:
health check-up center cohort (n = 100), hospital outpatient
cohort (n = 100), and hospital inpatient cohort (n = 100). We
used the model to perform diagnoses in these three cohorts
and observed the impact of varying FLL prevalence on model
performance. This experiment was repeated 100
times (Fig. S6A).

Since we used a combination of manual and automated ROI
annotation, we performed a robustness test to assess the
impact of variability in manual annotations on the model’s
performance. By expanding, shrinking, moving, or combining
these methods, we randomly adjusted the manually annotated
ROI by the radiologists to simulate the impact of variability in
annotation on model performance. This experiment was
repeated 100 times (Fig. S6B).

Statistical analysis

Continuous variables were summarized as means ± SDs, and
categorical variables were categorized as numbers and per-
centages. Performance of the binary-classification model was
visualized by a ROC (receiver-operating characteristic) curve
and evaluated by AUC. Performance of the multi-classification
model was displayed by confusion matrix and Macro-ROC, and
evaluated by Accuracy, Macro-AUC, Macro-Specificity, Macro-
430 Journal of Hepatology, Augu
Recall (same as sensitivity), Macro-Precision (same as positive
predictive value), Macro-NPV (negative predictive value),
Macro-F1, and six-type radar chart analysis (Supplementary
Material). 95% CIs were evaluated by bootstrapping with
1,000 resamples. In addition, for multi-class diagnosis
research, Accuracy could better evaluate model performance
than Macro-AUC. Therefore, for comparisons between AI
models and comparisons between AI and radiologists, we
conducted significance analysis on Accuracy by McNemar
test.26 p <0.05 indicated significant difference. Statistical
analysis was performed using R (Version 4.0.0).

Results

Clinical characteristics

Since January 2017 to December 2022, 2,914 FLLs from 49
centers were retrospectively collected and divided into training
set A (n = 2,088), the validation set (n = 592), and training set B
(n = 234). FLLs from the other three independent centers were
divided into the internal test set (n = 110), and external test sets
A (n = 113) and B (n = 276). Since January 2023 to December
2023, 312 FLLs from 52 centers were prospectively collected
as the prospective external test set C (Fig. 1, Table 1). As a
result, a total of 3,725 CEUS videos (corresponding to 3,725
FLLs) from 3,342 patients were collected in this study
(Table S3). Each CEUS video continuously recorded the arterial
phase, portal phase, and delayed phase of the FLL, containing
more than 1,000 frames. In other words, more than 9,000 min
(nearly 4,000,000 frames) were collected to develop and vali-
date the CEUS-based FLL multi-classification AI model.

Patient baseline characteristics (age, sex, viral hepatitis
history, malignancy history, tumor size, and FLL type) showed
no significant differences between training set A and the vali-
dation set, between training set B and the internal test set, and
between external test sets A, B, and C (all p >0.05, Table 1).
Additionally, training set A had 624 FLLs with various biomarker
information, including Hep (n = 499), GPC3 (n = 436), CK7 (n =
513), and CK19 (n = 550). The validation set had 181 FLLs with
various biomarker information, including Hep (n = 135), GPC3
(n = 109), CK7 (n = 130), and CK19 (n = 123) (Fig. 1). There were
no significant differences in the biomarker information between
these two datasets (all p >0.20, Table S4).

Performance of Module-Disease

Compared with strategy A, strategy B had a generally better
performance in training set A and the validation set (Table S5).
In the validation set, Strategy B showed more correct classifi-
cations in the confusion matrix, and it was significantly better
than strategy A in terms of Accuracy (0.83, 95% CI 0.80-0.86
vs. 0.77, 95% CI 0.74-0.79, p <0.001), while also exhibiting
better Macro-AUC (0.86, 95% CI 0.83-0.89 vs. 0.81, 95% CI
0.79-0.83), Macro-Specificity (0.94, 95% CI 0.89-0.97 vs. 0.92,
95% CI 0.88-0.95), Macro-Recall (0.79, 95% CI 0.76-0.82 vs.
0.71, 95% CI 0.67-0.75), Macro-Precision (0.85, 95% CI 0.82-
0.88 vs. 0.75, 95% CI 0.72-0.77), Macro-NPV (0.95, 95% CI
0.89-0.98 vs. 0.93, 95% CI 0.87-0.95) and Macro-F1 (0.81,
95% CI 0.78-0.83 vs. 0.72, 95% CI 0.68-0.76) (Fig. 3A).
Therefore, strategy B was chosen to build Module-Disease, and
AUCs of five binary-classification sub-models in strategy B are
listed in Table S6.
st 2025. vol. 83 j 426–439



Table 1. Baseline characteristics of training, validation and test sets.

Training set A Validation set

p1

Training set B Internal test set

p2

External test set A External test set B External test set C

p3n = 2,088 n = 592 n = 234 n = 110 n = 113 n = 276 n = 312

Age (%) 0.362 0.938 0.745
<50 years 590 (28.3%) 150 (25.3%) 34 (14.5%) 17 (15.5%) 27 (23.9%) 57 (20.7%) 66 (21.2%)
50-60 years 732 (35.1%) 219 (37.0%) 83 (35.5%) 37 (33.6%) 35 (31.0%) 98 (35.5%) 118 (37.8%)
>60 years 766 (36.7%) 223 (37.7%) 117 (50.0%) 56 (50.9%) 51 (45.1%) 121 (43.8%) 128 (41.0%)

Sex (%) 0.127 0.678 0.794
Male 1,515 (72.6%) 410 (69.3%) 157 (67.1%) 77 (70.0%) 80 (70.8%) 192 (69.6%) 225 (72.1%)
Female 573 (27.4%) 182 (30.7%) 77 (32.9%) 33 (30.0%) 33 (29.2%) 84 (30.4%) 87 (27.9%)

Viral hepatitis history (%) 0.139 0.634 0.822
No 952 (45.6%) 249 (42.1%) 109 (46.6%) 55 (50.0%) 53 (46.9%) 139 (50.4%) 155 (49.7%)
Yes 1,136 (54.4%) 343 (57.9%) 125 (53.4%) 55 (50.0%) 60 (53.1%) 137 (49.6%) 157 (50.3%)

Malignancy history (%) 0.335 0.975 0.902
No 1,232 (59.0%) 363 (61.3%) 153 (65.4%) 71 (64.5%) 76 (67.3%) 179 (64.9%) 205 (65.7%)
Yes 856 (41.0%) 229 (38.7%) 81 (34.6%) 39 (35.5%) 37 (32.7%) 97 (35.1%) 107 (34.3%)

Tumor size (%) 0.08 0.11 0.821
<3 cm 457 (21.9%) 127 (21.5%) 46 (19.7%) 32 (29.1%) 28 (24.8%) 53 (19.2%) 72 (23.1%)
3-5 cm 835 (40.0%) 269 (45.4%) 120 (51.3%) 42 (38.2%) 39 (34.5%) 100 (36.2%) 99 (31.7%)
5-10 cm 624 (29.9%) 157 (26.5%) 52 (22.2%) 27 (24.5%) 33 (29.2%) 88 (31.9%) 103 (33.0%)
>10 cm 172 (8.2%) 39 (6.6%) 16 (6.8%) 9 (8.2%) 13 (11.5%) 35 (12.7%) 38 (12.2%)

FLL type (%) 0.305 0.986 0.891
HCC 1,122 (53.7%) 315 (53.2%) 128 (54.7%) 60 (54.5%) 56 (49.6%) 120 (43.5%) 134 (42.9%)
HM 643 (30.8%) 169 (28.5%) 45 (19.2%) 24 (21.8%) 23 (20.4%) 67 (24.3%) 72 (23.1%)
ICC 126 (6.0%) 36 (6.1%) 15 (6.4%) 7 (6.4%) 6 (5.3%) 16 (5.8%) 28 (9.0%)
HH 103 (4.9%) 34 (5.7%) 12 (5.1%) 4 (3.6%) 10 (8.8%) 31 (11.2%) 31 (9.9%)
HA 94 (4.5%) 38 (6.4%) 18 (7.7%) 8 (7.3%) 11 (9.7%) 23 (8.3%) 25 (8.0%)
OT 0 (0.0%) 0 (0.0%) 16 (6.8%) 7 (6.4%) 7 (6.2%) 19 (6.9%) 22 (7.1%)

FLL, focal liver lesion; HA, hepatic abscess; HCC, hepatocellular carcinoma; HH, hepatic hemangioma; HM, hepatic metastasis; ICC, intrahepatic cholangiocarcinoma; OT, other type.
p1 showed the difference between training set A and the validation set.
p2 showed the difference between training set B and the internal test set.
p3 showed the difference among external test sets A, B and C.
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Fig. 3. Performance evaluation of Module-Disease, Module-Biomarker, and Module-Clinic in the first construction stage. (A) In Module-Disease, for the five-
type FLL classification in the validation set (n = 592), strategy B (green) using distributed training generally outperformed strategy A (purple) using direct training, in
terms of confusion matrix, Macro-AUC, Accuracy, Macro-Precision, Macro-Recall, and Macro-F1. (B) In Module-Biomarker, receiver-operating characteristic curves of
the four biomarker sub-models are shown for the training set A (blue) and validation set (black). (C) In Module-Clinic, 17 types of clinical information were selected,
because each of them had a correlation coefficient of more than the moderate degree (absolute value >0.2) with at least one FLL type. Ellipse direction represented the
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=
positive or negative correlation between factor and FLL type. Ellipse color and shape represented the correlation degree. AFP, alpha-fetoprotein; ALB, albumin; ALT,
alanine aminotransferase; AST, aspartate aminotransferase; CA19-9, cancer antigen 19-9; CA125, cancer antigen 125; CEA, carcinoembryonic antigen; CEUS,
contrast-enhanced ultrasound; CK, cytokeratin; LSTM, long short-term memory; FLLs, focal liver lesions; GPC3, glypican-3; HA, hepatic abscess; HCC, hepatocellular
carcinoma; HH, hepatic hemangioma; HM, hepatic metastasis; ICC, intrahepatic cholangiocarcinoma; OT, other type; PLT, platelet count; TP, total protein; WBC, white
blood cell count. (This figure appears in color on the web.)
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Fig. 4. Performance evaluation of Model-D, Model-DC, Model-DB and Model-DCB in the second construction stage. (A) In the internal test set (n = 110), Model-DCB

(light blue) outperformed Model-D (pale green), Model-DC (light green), and Model-DB (dark green) in terms of confusion matrix, Macro-AUC, ACC, Macro-Specificity,
Macro-Recall, Macro-NPV, and Macro F1. (B) Radar charts demonstrate the different performances between these four models for the six-type classification of FLLs.
ACC, Accuracy; FLL, focal liver lesion; HA, hepatic abscess; HCC, hepatocellular carcinoma; HH, hepatic hemangioma; HM, hepatic metastasis; ICC, intrahepatic
cholangiocarcinoma; OT, other type. (This figure appears in color on the web.)
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Performance of Module-Biomarker

Four biomarker sub-models were also developed and validated
in training set A and the validation set, and their AUCs were:
0.83, 95% CI 0.79-0.87 and 0.81, 95% CI 0.73-0.89 for the Hep
sub-model; 0.81, 95% CI 0.77-0.85 and 0.77, 95% CI 0.68-0.85
for the GPC3 sub-model; 0.80, 95% CI 0.76-0.84 and 0.78,
95% CI 0.69-0.86 for the CK7 sub-model; and 0.80, 95% CI
0.76-0.84 and 0.79, 95% CI 0.69-0.87 for the CK19 sub-model
(Fig. 3B, Table S6). These results revealed a good biomarker
prediction capability of our CEUS-based AI model.
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Fig. 5. Performances ofModel-DCB in the internal test set and external test sets A
DCB in four test sets. (B) Accuracy, Macro-Specificity, Macro-Precision, Macro-Recall
Model-DCB exceeded 0.80 (red dotted lines) in subgroup analyzes, including gender,
(D) All accuracies for the six-type classification of Model-DCB exceeded 0.90 (red dotte
HH, hepatic hemangioma; HM, hepatic metastasis; ICC, intrahepatic cholangiocarci
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Selected clinical information in Module-Clinic

Seventeen types of clinical information were chosen in Module-
Clinic, including age, sex, alpha-fetoprotein, carcinoembryonic
antigen, cancer antigen 19-9 etc (Fig. 3C). Each of them had a
correlation coefficient of more than moderate degree (absolute
value >0.2) with at least one FLL type (Table S7).

Performances of four multi-classification models

Model-D, Model-DC, Model-DB, and Model-DCB were trained in
training set B and evaluated in the internal test set for the six-
B
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, B, andC. (A) Receiver-operating characteristic curves andMacro-AUCs ofModel-

, Macro-NPV, and Macro-F1 of Model-DCB in four test sets. (C) Most accuracies of
age, tumor size, etiology, cirrhosis, fatty liver, and ultrasound device manufacturer;
d hexagons) in four test sets. HA, hepatic abscess; HCC, hepatocellular carcinoma;
noma; OT, other type. (This figure appears in color on the web.)
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type classification of FLLs. Our results showed that Model-DCB

outperformed the other three models in both datasets
(Table S8). In the internal test set, Model-DCB was clearly the
best in the confusion matrix, and provided the highest Accu-
racy (0.90, 95% CI 0.84-0.95), Macro-AUC (0.89, 95% CI 0.84-
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0.93), Macro-Specificity (0.98, 95% CI 0.97-0.99), Macro-Recall
(0.82, 95% CI 0.69-0.97), Macro-NPV (0.98, 95% CI 0.97-0.99),
and Macro-F1 (0.84, 95% CI 0.73-0.92) among the four models
(Fig. 4A). Therefore, it was chosen for further investigations in
the next clinical testing stage.
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Intelligent diagnosis for focal liver lesions
In the internal test set, compared with Model-D, Model-DC

had a 5.0% improvement in Accuracy (0.80, 95% CI 0.72-0.87
vs. 0.84, 95% CI 0.76-0.91, p = 0.28), but Model-DB achieved
7.5% improvement (0.80, 95% CI 0.72-0.87 vs. 0.86, 95% CI
0.81-0.93, p = 0.19), which revealed that Module-Biomarker
had a greater effect on improving classification accuracy than
Module-Clinic. For Model-D, Model-DC, and Model-DB, their
accuracy in diagnosing HCC and HM was always worse than
that in diagnosing the other four types of FLLs (Fig. 4B).
However, by integrating all three modules through MLP, Model-
DCB achieved similar levels of diagnostic accuracy for all six
types of FLLs, reaching or exceeding 0.94 (Table S8).
Performances of Model-DCB in retrospective and
prospective test sets

Model-DCB had accuracies (95% CI) of 0.90 (0.85-0.95), 0.85
(0.78-0.92), 0.85 (0.80-0.89), and 0.86 (0.82-0.90) in the internal
test set, and external test sets A, B, and C, respectively
(Fig. 5A). Macro-AUC, Macro-Specificity, Macro-Recall, Macro-
Precision, Macro-NPV, and Macro-F1 of Model-DCB ranged
from 0.87 to 0.91, from 0.96 to 0.98, from 0.75 to 0.85, from
0.79 to 0.87, from 0.97 to 0.98, and from 0.78 to 0.84 in the four
test sets (Fig. 5B, Table S9). Its accuracies in all subgroups
ranged from 0.77 to 1.00 (Fig. 5C and Fig. S7, Table S9). Ac-
curacies of the six-type classification of FLLs were all above
0.90 (HCC 0.91-0.96; HM 0.93-0.94; ICC 0.95-0.97; HH 0.96-
0.99, HA 0.94-0.97 and OT 0.97-1.00, Fig. 5D, Table S9). These
results indicated that Model-DCB was accurate, stable and
reliable in the multi-type FLL classifications.
Comparison with CEUS and MRI radiologists

After comparing Model-DCB with three junior CEUS radiologists,
three senior CEUS radiologists, and two Senior MRI radiolo-
gists in external test sets A, B, and C, we found it was signifi-
cantly better than junior CEUS radiologists in terms of accuracy
(all p <0.05), and comparable to senior CEUS radiologists and
MRI radiologists (all p >0.05, Fig. 6A). Detailed performance
comparison data are listed in Tables 2 and Fig. S10. We also
performed subgroup analyses between Model-DCB and two
Table 2. Clinical testing stage.

External test set C

Accuracy p Macro-Specificity M

AI 0.86 (0.82–0.90) reference 0.97 (0.96–0.98) 0.8
Junior1 0.59 (0.53–0.64) <0.01 0.92 (0.90–0.93) 0.5
Junior1+AI 0.83 (0.80–0.88) 0.31 0.97 (0.96–0.97) 0.7
Junior2 0.70 (0.65–0.75) <0.01 0.94 (0.93–0.95) 0.6
Junior2+AI 0.85 (0.81–0.89) 0.64 0.97 (0.96–0.98) 0.8
Junior3 0.63 (0.57–0.68) <0.01 0.92 (0.91–0.93) 0.5
Junior3+AI 0.84 (0.80–0.88) 0.42 0.97 (0.96–0.98) 0.7
Senior1 0.83 (0.80–0.85) 0.25 0.97 (0.95–0.98) 0.7
Senior1+AI 0.86 (0.82–0.90) 0.91 0.97 (0.96–0.98) 0.8
Senior2 0.85 (0.83–0.87) 0.71 0.97 (0.95–0.98) 0.
Senior2+AI 0.85 (0.81–0.89) 0.73 0.97 (0.96–0.98) 0.8
Senior3 0.83 (0.79–0.88) 0.29 0.97 (0.95–0.98) 0.7
Senior3+AI 0.86 (0.82–0.90) 0.99 0.97 (0.96–0.98) 0.8
MRI1 0.86 (0.82–0.89) 0.16 0.97 (0.96–0.98) 0.8
MRI2 0.86 (0.82–0.90) 0.99 0.97 (0.96–0.98) 0.8

AI, artificial intelligence; NPV, negative predictive value.
Comparison of Accuracy between AI and radiologists was performed by McNemar test.
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Senior MRI radiologists in these three datasets, and no signif-
icant differences emerged (Table S11).

Cooperation with CEUS radiologists

One month later, all six CEUS radiologists performed the
diagnosis again with Model-DCB assistance in three external
validation sets. The information provided by Model-DCB to
CEUS radiologists was shown in Fig. S8. Accuracy significantly
improved for all junior CEUS radiologists (from 0.59-0.73 to
0.82-0.87, all p <0.05) (Fig. 6B), as did Macro-Recall (from 0.49-
0.60 to 0.75-0.80), Macro-Precision (from 0.49-0.60 to 0.75-
0.83) and Macro-F1 (from 0.47-0.58 to 0.76-0.80). Similar
diagnostic enhancement was also observed for senior CEUS
radiologists, but the improvements were not statistically sig-
nificant (all p >0.05). Detailed comparison data are listed in
Table S10. The addition of model assistance did not signifi-
cantly affect the diagnosis time of radiologists, but slightly
improved the diagnostic confidence of junior radiologists
(Tables S12 and S13).

Model visualization

The optical flow map, heat map, Module-Disease probability
scores of its five sub-models, and Module-Biomarker proba-
bility scores of its four sub-models are visualized for three
different cases in Fig. S8 as examples. For the patients with
HCC, the optical flow maps and heat maps of CEUS frames
displayed a rapid change pattern (Fig. S8A and B), which
probably corresponded to a typical CEUS dynamic feature in
HCC: “rapid hyperenhancement in arterial phase and washout
in portal phase” (Fig. S5). This pattern was rarely seen in other
FLL types (Fig. S8C).

Model generalization and robustness experiment

In the generalization experiment, there was no significant dif-
ference in the accuracy of Model-DCB in three simulated clinical
scenarios, which proved that the difference of FLL prevalence
did not affect the performance of Model-DCB (Fig. S9A).

In the robustness experiment, we found that randomly
adjusting the ROI did not have a significant impact on the
(prospective multicenter test set)

acro-Recall Macro-Precision Macro-NPV Macro-F1

5 (0.81–0.90) 0.81 (0.75–0.86) 0.97 (0.96–0.98) 0.83 (0.78–0.88)
3 (0.47–0.60) 0.49 (0.43–0.54) 0.91 (0.90–0.92) 0.50 (0.44–0.56)
7 (0.71–0.83) 0.75 (0.69–0.81) 0.96 (0.96–0.97) 0.76 (0.69–0.82)
0 (0.53–0.66) 0.57 (0.52–0.63) 0.94 (0.93–0.95) 0.58 (0.52–0.64)
0 (0.74–0.86) 0.78 (0.71–0.84) 0.97 (0.96–0.98) 0.79 (0.73–0.84)
5 (0.49–0.62) 0.52 (0.46–0.58) 0.92 (0.91–0.93) 0.53 (0.46–0.59)
8 (0.72–0.83) 0.76 (0.70–0.82) 0.97 (0.96–0.97) 0.77 (0.71–0.82)
4 (0.71–0.78) 0.73 (0.69–0.80) 0.96 (0.95–0.97) 0.73 (0.70–0.78)
3 (0.77–0.88) 0.80 (0.75–0.86) 0.97 (0.96–0.98) 0.81 (0.75–0.86)
8 (0.76–0.85) 0.81 (0.78–0.86) 0.97 (0.96–0.98) 0.79 (0.76–0.84)
2 (0.76–0.87) 0.79 (0.73–0.85) 0.97 (0.96–0.98) 0.80 (0.74–0.85)
7 (0.73–0.82) 0.76 (0.72–0.82) 0.96 (0.96–0.97) 0.76 (0.72–0.81)
3 (0.77–0.87) 0.80 (0.75–0.86) 0.97 (0.96–0.98) 0.81 (0.76–0.86)
4 (0.79–0.89) 0.81 (0.75–0.86) 0.97 (0.96–0.98) 0.82 (0.77–0.87)
4 (0.79–0.90) 0.81 (0.75–0.87) 0.97 (0.96–0.98) 0.83 (0.77–0.88)
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performance of the model on the three external test
sets (Fig. S9B).

Analysis of misdiagnosis cases

Fig. S10 shows the cases misdiagnosed by Model-DCB in three
external test sets (n = 701). The largest and the most frequent
misdiagnosis was between HCC and HM (n = 27, 5.7%, 27/
472). They are also generally considered to be very difficult to
distinguish, particularly due to the wide variety of origins of HM,
which leads to significant variability in CEUS features. The most
critical misdiagnosis was malignant FLLs (HCC, HM, ICC)
misdiagnosed as benign FLLs (HH, HA) (n = 21, 4.0%, 21/522).

It is sometimes difficult to distinguish necrotic metastatic
lesions and HA on CEUS videos, but our results showed the
misdiagnosis rate between HM and HA was relatively low (n =
7, 3.2%, 7/221). This was because their clinical and laboratory
findings (medical history and white blood cell count) were very
different, especially when HA progressed to liquefaction. This
also revealed the importance of Module-Clinic (Fig. S8C).

Discussion
In this study, we established a massive FLL database, including
3,725 CEUS videos and 805 biomarker results from 52 centers,
to build and validate our AI model (Model-DCB) for six-type FLL
classifications. Three independent test sets, including two
single-center retrospective sets and one multicenter prospec-
tive set, were employed to evaluate the diagnostic performance
of Model-DCB, which achieved accuracies of 0.85, 0.85, and
0.86, respectively. In all test sets, Model-DCB showed signifi-
cantly better performance than junior CEUS radiologists (all p
<0.05) and equivalent performance to senior CEUS radiologists
and senior MRI radiologists (all p >0.05). With its assistance,
junior CEUS radiologists significantly improved their classifi-
cation accuracy (p <0.05), reaching the level of se-
nior radiologists.

Accurate classification of FLLs is of great significance for
treatment selection, prognosis prediction, and appropriate
disease management.27,28 In recent years, studies on diag-
nosing FLL using AI technology have been continually
emerging. We have summarized 15 outstanding studies from
2018 to now and listed them in Table S14. Compared with
previous studies based on ultrasound/CEUS, our study was the
first to use an AI method specifically designed for dynamic
video analysis, with the largest sample size and multicenter
prospective evaluation. Therefore, our results are more solid
and reliable. Only one study had a larger data size than ours,16

but it was mainly for hepatic echinococcosis diagnosis rather
than multi-type FLL classification. The robust performance of
Model-DCB across 84 subgroups, including sex, age, tumor
size, etiology, cirrhosis, fatty liver and ultrasound device
manufacturer, has not been seen in other studies, suggesting
that our model is likely to be more generalizable.

Previous studies on the use of DL to diagnose FLLs had
given us a lot of inspiration. Hamm CA et al.’s study using
multiphasic MRI had a good reference value for CEUS in terms
of processing temporal information.29,30 Compared with pre-
vious studies based on contrast-enhanced CT (CECT) or MRI,
our study still had advantages in terms of data size, classifi-
cation types, and prospective validation. Ying et al.’s study
Journal of Hepatology, Augu
using CECT was the only one with a larger data size than
ours.31 Their AI model (LiAIDS) was excellent and can classify
HCC, HM, ICC, HH, HA, which was the same with our Model-
DCB. However, unlike our model, instead of classifying
extremely challenging rare types of FLL, such as hepatic ade-
nomas, hepatic lymphomas, etc., LiAIDS was trained to classify
hepatic cysts, which can be easily diagnosed by most doctors
in clinical practice, without using AI. In addition, compared with
CECT and MRI, CEUS has inherent advantages (real-time im-
aging, no radiation, low cost, and shorter examination times).

Unlike previous studies that relied ona ‘from image todisease’
strategy (Module-Disease),wealsomade full useof thebiomarker
information of FLL and added the ‘from image to biomarker to
disease’ strategy (Module-Biomarker). The relevant results
proved that our hypothesiswas correct.Whether fromModel-D to
Model-DB (Accuracy from0.80 to0.86) or fromModel-DC toModel-
DCB (Accuracy from 0.84 to 0.90), adding Module-Biomarker
improved the multi-classification performance for FLLs (Fig.4B).
Furthermore, the way in which Model-DCB intelligently applied
biomarker information was consistent with previous biomarker
studies. For example, Hep was a well-established biomarker for
HCC but is rarely found in other FLL types [17, 18]. Therefore, the
Hep sub-model synergized with the HCC sub-model to enhance
the identification of HCC (Fig. S8A) and played a decisive role
when the predicted probability of the HCC sub-model was close
to that of another FLL sub-model (Fig. S8B). The predictive ability
of biomarkers also gave Model-DCB the potential to quantitatively
evaluate the aggressiveness of malignant FLL and predict prog-
nosis, which may help achieve better treatment decisions before
pathological analysis.

In three external test sets, we found that the assistance of
Model-DCB can effectively improve the diagnostic performance
of CEUS radiologists at all levels, especially for junior CEUS
radiologists. With Model-DCB assistance, both junior and senior
CEUS radiologists could achieve diagnostic performances
comparable to or even better than those of senior MRI radiol-
ogists, which were generally considered the silver standard for
FLL diagnosis, second only to biopsy.24,32 Such AI-assisted
improvement may have great significance for real-world clin-
ical practice. Globally, the number of ultrasound devices and
their application regions far exceed those of MRI, and ultra-
sound is also a cheaper, more convenient, and faster imaging
method. CEUS technology enhances the diagnostic capabil-
ities of ultrasound, and Model-DCB further reduces the experi-
ence requirements of CEUS radiologists, allowing even junior or
inexperienced CEUS radiologists in remote or underdeveloped
regions to provide patients with FLL with diagnostic services
comparable to those of senior MRI radiologists. Model-DCB also
may greatly simplify the process from diagnosis to treatment
for patients with FLL. In the future, some of them may not need
to undergo days or weeks of exhausting back-to-back exami-
nations in ultrasound, MRI, and pathology departments. For
patients with small malignant FLLs, ultrasound screening,
diagnosis, and interventional ablation may be completed within
1 day solely in the ultrasound department, saving the precious
time of doctors and reducing the medical burden for patients.
As the incidence of FLL continues to increase worldwide,33

promoting AI models that can assist CEUS radiologists in the
accurate diagnosis and management of FLL would be
more meaningful.31,34
st 2025. vol. 83 j 426–439 437



Intelligent diagnosis for focal liver lesions
Although ultrasound is the most widely used tool for liver
imaging examinations, it still has great imaging variability due to
numerous manufacturers and different system parameter set-
tings. To overcome such variability, we used the two-stream
model strategy. Because the optical flow was generated by
calculating the difference between two adjacent CEUS frames,
this method paid more attention to the changing trend of the
video rather than the video itself, thus circumventing the im-
aging variability in CEUS. 226 US devices from nine major
manufacturers participated in our study, yet Model-DCB still
achieved high stability in all test sets (Fig. 5C). Fig. S5 shows
two examples. CEUS images acquired from Mindray and
Siemens devices showed obvious differences in color satura-
tion, brightness, and contrast, but they were well normalized by
converting to optical flow maps.

Another unique advantage of Model-DCB was that it achieved
high-accuracy classification of OT without training an OT sub-
model. OT included a variety of FLL types with extremely low
incidence and lacked unified imaging characteristics, so it was
almost impossible to train anefficaciousOTsub-model (Fig.S11).
However, a distributed training strategy can improve the diag-
nostic performance for OT by improving the diagnostic perfor-
mance of other sub-models. The diagnostic capability for OT is
indispensable for the translation of AI models from experiment to
clinical, because it can prevent AI from making misleading di-
agnoses uncontrollably when faced with unknown diseases.

Last but not least, Model-DCB only required very limited
computing power (two RTX 4090 Ti graphics cards) for training,
which we deliberately set up so that any ultrasound manufac-
turer can easily make their device independently support the
application of the model, without greatly affecting the size,
portability and cost of the device. Moreover, Model-DCB
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required little manual work for ROI definition. These two char-
acteristics are especially critical for ultrasound examinations,
because ultrasound radiologists need to acquire images and
make diagnoses at the same time, and ultrasound devices are
frequently moved between beds. A huge computing hardware
that cannot be stuffed into the ultrasound device and heavy
manual annotation burden will make it difficult for AI models to
achieve clinical translation in real ultrasound scenarios.

Our study has some limitations. First, CEUSs in this study
were all collected in Chinese centers, and international verifi-
cation will be needed in the future. Second, the 1-year pro-
spective test set might not capture longitudinal variations or
future practices, and we will continue to collect data and vali-
date the model in the future. Third, the distribution of FLL types
in this study did not exactly match the natural distribution, but
was representative of the distribution of patients undergoing
CEUS. Fourth, the diagnosis of some benign FLLs was not
based on pathological diagnosis but on clinical findings, labo-
ratory results, and imaging examination.

In conclusion, by effectively integrating CEUS videos,
biomarker information, and clinical information, Model-DCB

achieved accurate multi-type FLL classification in multiple
clinical tests, including independent retrospective tests and a
prospective multicenter test. Its assistance improved the
diagnostic performance of all participating CEUS radiologists,
especially junior radiologists. We believe that Model-DCB’s
multi-classification capability, cross-manufacturer stability, low
computing power requirement, and inexpensive and easy-to-
use features give it great potential for large-scale clinical ap-
plications that will benefit a wide range of populations, espe-
cially patients with FLL in remote, suburban or underdeveloped
areas who have difficulty accessing MRI.
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