
MEDICAL IMAGING TOOLKIT

MITK TUTORIAL

MITK

MITK Tutorial

Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences
Web site: http://www.mitk.net

Corresponding person: Professor Jie Tian
E-mail: tian@doctor.com

http://www.mitk.net/

M I T K T U T O R I A L

Chapter 1

Surface Reconstruction
Using MITK

his chapter will use an example to demonstrate how to use MITK to
proceed surface reconstruction. This example takes Microsoft Visual
Studio 6.0 as development environment.

Classes Used in Surface Reconstruction
mitkVolume：mitkVolume is the most important data object in MITK. It
represents a volume composed by a series of slices. All the image data need to
be processed must be converted into the form of mitkVolume first. Include
mitkVolume.h to use this class and see MITK help documents to get detailed
information about this class.

mitkMesh: mitkMesh is also a data object which represent a 3-dimensional
geometrical data object, i.e. the surface representation of the object generated by
surface reconstruction. Include mitkMesh.h to use this class and see MITK help
documents to get detailed information about this class.

mitkSurfaceModel: mitkSurfaceModel is a data model which represents the
rendering model of the data object in a 3-dimensional scene. mitkSurfaceModel
represents the rendering model of mitkMesh. Include mitkSurfaceModel.h to
use this class and see MITK help documents to get detailed information about
this class.

mitkRawReader: mitkRawReader is a volume reader object. It reads data from
a raw file and fill it into a volume. The reconstruction process will get volume
data from it. Include mitkRawReader.h to use this class and see MITK help
documents to get detailed information about this class.

mitkMarchingCubes: mitkMarchingCubes is a filter which represents an
algorithm object. It encapsulates the algorithm object for surface reconstruction.
We will use this algorithm called “Marching Cubes” to reconstruct the surface
from the volume data. Include mitkMarchingCubes.h to use this class and see
MITK help documents to get detailed information about this class.

mitkView: mitkView is a view encapsulates a window on screen. It has the
ability of displaying multi-models and supports the interactive manipulation of

T

1

M I T K T U T O R I A L

the mouse. Include mitkView.h to use this class and see MITK help documents
to get detailed information about this class.

Example for Surface Reconstruction
First let’s see the functions achieved by this example. The main user interface is
shown as follows.

Fig. 1 Main User Interface

Now let’s do surface reconstruction step by step.

Step 1: Load volume data from a raw file.

Click .

2

M I T K T U T O R I A L

Fig. 2 Load Volume Data

Select the raw file to open.

Fig. 3 Select Raw File

Because the raw file has no information about the data it contains, you must
enter the volume parameters into the dialog shown after you clicked the “Open”
button in open file dialog as follows.

3

M I T K T U T O R I A L

Fig. 4 Set Volume Parameters

When you have entered all the information, click to load the
volume. If no error occurs, the volume data will be loaded to memory
successfully after a while.

Step 2: Surface reconstruction.

Click .

Fig. 5 Surface Reconstruction

Enter the low threshold and high threshold.

4

M I T K T U T O R I A L

Fig. 6 Enter Thresholds

The choice of thresholds lies on the physical characteristics of the object whose

surface is to be extracted. It needs some priori knowledge. Click
after the proper thresholds have been entered. If no error occurs, the result will
be shown in the client area of the main window after a while. You can use
mouse to manipulate the surface model:

Keep left button down and drag on the view to rotate the model;

Keep middle button down and drag on the view to move the model;

Keep right button down and drag on the view to zoom in or zoom out.

Fig. 7 The Surface Reconstruction Result

Click to show the model in points;

Click to show the model in wire frame;

5

M I T K T U T O R I A L

Click to show the surface.

Now let’s see how easy to build this example with MITK.

Step 1: New a project named “MitkTest” in Visual C++ 6.0.

Step 2: Set up the UI resources. You can copy them from the source codes of
the example.

Step 3: Add two members to CMitkTestDoc class (in MitkTestDoc.h) to
register the data objects and set them to NULL in constructor (in
MitkTestDoc.cpp). And add a double member to record the time used by
surface reconstruction and set it to 0 in constructor. Don’t forget including
necessary header files.

// MitkTestDoc.h : interface of the CMitkTestDoc class

#include "mitkVolume.h"
#include "mitkMesh.h"

class CMitkTestDoc : public CDocument
{
 … … …
 mitkVolume *m_Volume;
 mitkMesh *m_Mesh;

 double m_TimeUsed;
 … … …
};

CMitkTestDoc::CMitkTestDoc()
{
 // TODO: add one-time construction code here
 m_Volume = NULL;
 m_Mesh = NULL;

 m_TimeUsed = 0;
}

Step 4: Add two members to CMitkTestView class (in MitkTestView.h).
m_Surface represent the rendering model of the mesh data and set them to
NULL in constructor (in MitkTestView.cpp). m_View is used to show the
model. Don’t forget including necessary header files.

// MitkTestView.h : interface of the CMitkTestView class

6

M I T K T U T O R I A L

#include "mitkSurfaceModel.h"
#include "mitkMesh.h"
#include "mitkView.h"

class CMitkTestView : public CView
{
 … … …
 void SetMeshData(mitkMesh* mesh);

 mitkSurfaceModel *m_Surface;

mitkView *m_View;
 … … …
};

CMitkTestView::CMitkTestView()
{
 // TODO: add construction code here
 m_View = NULL;
 m_Surface = NULL;

}

The function SetMeshData() just calls the SetData() function in order to
encapsulate m_Surface. See it as follows.

void CMitkTestView::SetMeshData(mitkMesh* mesh)
{
 m_Surface->SetData (mesh);
}

Step 5: Add message handlers to handle the commands and two private
methods to clear mesh and volume data in CMitkTestDoc.

afx_msg void OnFileOpenVolume();
afx_msg void OnReconstruction();
afx_msg void OnInfo();

void clearVolume();
void clearMesh();

The codes are shown as follows.

// Message handler for loading volume data.
void CMitkTestDoc::OnFileOpenVolume()

7

M I T K T U T O R I A L

{
 // TODO: Add your command handler code here
 // Show open file dialog.
 COpenFileDialog fileDialog;
 fileDialog.SetTitle("Open Volume Data");
 fileDialog.SetFilter("Raw Data(*.*)\0*.*\0\0");

 // If user select a raw file and press "OK".
 if(fileDialog.Run())
 {
 int nFilterIndex = fileDialog.GetFilterIndex();
 CString szFileName = fileDialog.GetPathName();

 // Read raw data from the file and generate a volume.
 CRawSetDlg dlg;
 if (dlg.DoModal() == IDOK)
 {
 // Use mitkRawReader to generate volume from raw

// data file.
 mitkRawReader *reader = new mitkRawReader;

 // Set information about the raw data to the reader.
 reader->SetWidth(dlg.m_Width);
 reader->SetHeight(dlg.m_Height);
 reader->SetImageNum(dlg.m_ImageNum);

 reader->SetSpacingX(dlg.m_SpacingX);
 reader->SetSpacingY(dlg.m_SpacingY);
 reader->SetSpacingZ(dlg.m_SpacingZ);

 reader->SetChannelNum(dlg.m_ChannelNum);
 reader->SetDataType(dlg.m_DataType);
 reader->SetEndian(dlg.m_IsBigEndian);
 reader->SetPlanarCfg(dlg.m_IsColorByPlane);

 // Set name of the file to read.
 reader->AddFileName(szFileName);

 // Run reading process.
 reader->Run();

 // Clear the old volume.
 this->clearVolume();

 // Get the volume generated by this reader.
 m_Volume = reader->GetOutput();

8

M I T K T U T O R I A L

 // To keep the volume data in main program.
 m_Volume->AddReference();

 // Delete the mitkRawReader object.
 reader->Delete();
 }
 }
}

// Message handler for surface reconstruction.
void CMitkTestDoc::OnReconstruction()
{
 // TODO: Add your command handler code here
 CThresholdDlg dlg;

 // Show the dialog to get two thresholds.
 if (dlg.DoModal() == IDOK)
 {
 // Use mitkMarchingCubes to proceed surface reconstruction
 mitkMarchingCubes *mc = new mitkMarchingCubes;

 // Set thresholds and input volume.
 mc->SetThreshold(dlg.m_LowValue, dlg.m_HighValue);
 mc->SetInput(m_Volume);

 // Record the start time of the reconstruction process.
 clock_t start = clock();

 // Run the process.
 mc->Run();

 // Record the finish time of the reconstruction process.
 clock_t finish = clock();

 // Calculate the time used by the reconstruction process.
 m_TimeUsed = (double)(finish - start) /
CLOCKS_PER_SEC;

 // Get the pointer of MitkTestView
 POSITION pos = this->GetFirstViewPosition();
 CMitkTestView *view = (CMitkTestView *)(this-
>GetNextView(pos));

 // Clear the old mesh data.
 view->SetMeshData(NULL);
 this->clearMesh();

9

M I T K T U T O R I A L

 // Register the new mesh data.
 m_Mesh = mc->GetOutput();
 m_Mesh->AddReference();

 // Delete the mitkMarchingCubes object.
 mc->Delete();

 // Show information about the reconstruction result.
 this->OnInfo();

 // Send mesh to the view to display.
 view->SetMeshData(m_Mesh);

 UpdateAllViews(NULL);
 }
}

// Show information about the reconstruction result.
void CMitkTestDoc::OnInfo()
{
 // TODO: Add your command handler code here
 if (!m_Mesh) return;

// Get total triangle number of triangles and the memory used in
// bytes

 unsigned long triNum = m_Mesh->GetFaceNumber();
 unsigned long memSize = m_Mesh->GetActualMemorySize();

 CString msg;
 msg.Format("Time:%f s\nTriangles:%d\nTriangles per
sec.:%f\nMesh Memory Size:%d Bytes",
 m_TimeUsed, triNum, triNum/m_TimeUsed, memSize);
 ::AfxMessageBox(msg);
}

// Clear mesh data.
void CMitkTestDoc::clearMesh()
{
 if (m_Mesh)
 {
 m_Mesh->RemoveReference();
 m_Mesh = NULL;
 }
}

// Clear volume data.
void CMitkTestDoc::clearVolume()

10

M I T K T U T O R I A L

{
 if (m_Volume)
 {
 m_Volume->RemoveReference();
 m_Volume = NULL;
 }
}

Note:
i. The destructors of all classes derived from mitkObject in MITK are
protected. So you can not create local object in stack, and can not use delete
operator to delete the object created by new operator. Please call Delete()
function to delete the object if you really want to.
ii. MITK uses reference counting mechanism to track the number of
references to an object. So if you create MITK objects and set them to some
of the MITK processes, you do not need to delete them. MITK will take
care of all the objects. But if you want to keep an object (e.g. m_Volume
and m_Mesh in this example) alive during the whole running time of your
program, please call AddReference() of the object immediately when the
object has been created, and call RemoveReference() when you want to
delete the object. In other cases (e.g. the object of mitkMarchingCubes mc
in OnReconstruction() above), don’t call this two functions and call Delete()
to delete the object if it has nothing to do with any MITK processes.

Step 6: Add message handlers to handle WM_CREATE and WM_SIZE
messages so as to make mitkView fill the client area of the main window. The
codes are shown as follows.

int CMitkTestView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CView::OnCreate(lpCreateStruct) == -1)
 return -1;

 // TODO: Add your specialized creation code here
 // Get the size of client area.
 RECT clientRect;
 this->GetClientRect(&clientRect);
 int wWidth = clientRect.right - clientRect.left;
 int wHeight = clientRect.bottom - clientRect.top;

 // Create mitkView and set its position and size.
 m_View = new mitkView;
 m_View->SetParent(GetSafeHwnd());
 m_View->SetLeft(0);
 m_View->SetTop(0);
 m_View->SetWidth(wWidth);
 m_View->SetHeight(wHeight);

11

M I T K T U T O R I A L

 // Show mitkView.
 m_View->Show();

 // Build surface model to contain mesh data.
 m_Surface = new mitkSurfaceModel;

 // Set the material properties of the surface model.
 // You can also use default values.
 m_Surface->GetProperty()->SetAmbientColor(0.75f, 0.75f, 0.75f, 1.0f);
 m_Surface->GetProperty()->SetDiffuseColor(1.0f, 0.57f, 0.04f, 1.0f);
 m_Surface->GetProperty()->SetSpecularColor(1.0f, 1.0f, 1.0f, 1.0f);
 m_Surface->GetProperty()->SetSpecularPower(100.0f);
 m_Surface->GetProperty()->SetEmissionColor(0.0f, 0.0f, 0.0f, 0.0f);

 // Add this surface model to the view.
 m_View->AddModel(m_Surface);

 return 0;
}

void CMitkTestView::OnSize(UINT nType, int cx, int cy)
{
 CView::OnSize(nType, cx, cy);

 // TODO: Add your message handler code here
 // Set the position and size of the view
 // to make it fill the client area.
 m_View->SetLeft(0);
 m_View->SetTop(0);
 m_View->SetWidth(cx);
 m_View->SetHeight(cy);

 // Update the view.
 m_View->Update();
}

Step 7: The last step is to release the memory. Call clearMesh() and
clearVolume() in the destructor of the CMitkTestDoc class to delete m_Mesh
and m_Volume. Call Delete() of m_View in the destructor of the
CMitkTestView class to delete m_View.

The destructor of CMitkTestDoc:

CMitkTestDoc::~CMitkTestDoc()
{
 this->clearMesh();

12

M I T K T U T O R I A L

 this->clearVolume();
}

The destructor of CMitkTestView:

CMitkTestView::~CMitkTestView()
{
 if (m_View)
 {
 m_View->Delete();
 m_View = NULL;
 }
}
Note: When you called m_View->AddModel(m_Surface) in OnCreate()
function of CMitkTestView, MITK takes control of m_Surface. So it will be
deleted in m_View. Don’t delete it in the destructor of CMitkTestView.

13

	Classes Used in Surface Reconstruction
	Example for Surface Reconstruction

