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Summary
Background Epidermal growth factor receptor (EGFR) genotype is crucial for treatment decision making in lung 
cancer, but it can be affected by tumour heterogeneity and invasive biopsy during gene sequencing. Importantly, not 
all patients with an EGFR mutation have good prognosis with EGFR-tyrosine kinase inhibitors (TKIs), indicating the 
necessity of stratifying for EGFR-mutant genotype. In this study, we proposed a fully automated artificial intelligence 
system (FAIS) that mines whole-lung information from CT images to predict EGFR genotype and prognosis with 
EGFR-TKI treatment.

Methods We included 18 232 patients with lung cancer with CT imaging and EGFR gene sequencing from nine 
cohorts in China and the USA, including a prospective cohort in an Asian population (n=891) and The Cancer 
Imaging Archive cohort in a White population. These cohorts were divided into thick CT group and thin CT group. 
The FAIS was built for predicting EGFR genotype and progression-free survival of patients receiving EGFR-TKIs, and 
it was evaluated by area under the curve (AUC) and Kaplan-Meier analysis. We further built two tumour-based deep 
learning models as comparison with the FAIS, and we explored the value of combining FAIS and clinical factors (the 
FAIS-C model). Additionally, we included 891 patients with 56-panel next-generation sequencing and 87 patients with 
RNA sequencing data to explore the biological mechanisms of FAIS.

Findings FAIS achieved AUCs ranging from 0·748 to 0·813 in the six retrospective and prospective testing cohorts, 
outperforming the commonly used tumour-based deep learning model. Genotype predicted by the FAIS-C model was 
significantly associated with prognosis to EGFR-TKIs treatment (log-rank p<0·05), an important complement to gene 
sequencing. Moreover, we found 29 prognostic deep learning features in FAIS that were able to identify patients with 
an EGFR mutation at high risk of TKI resistance. These features showed strong associations with multiple genotypes 
(p<0·05, t test or Wilcoxon test) and gene pathways linked to drug resistance and cancer progression mechanisms.

Interpretation FAIS provides a non-invasive method to detect EGFR genotype and identify patients with an EGFR 
mutation at high risk of TKI resistance. The superior performance of FAIS over tumour-based deep learning methods 
suggests that genotype and prognostic information could be obtained from the whole lung instead of only tumour 
tissues.

Funding National Natural Science Foundation of China.

Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

Introduction
Targeted therapy to epidermal growth factor receptor 
(EGFR) has revolutionised the treatment of lung cancer.1,2 
Presently, the administration of EGFR-targeted therapy 
is determined by EGFR genotype, assessed through the 
gene sequencing of biopsied tumour tissues, which faces 
the difficulties of locating suitable tumour tissues 
because of the high genetic heterogeneity of lung 
cancer,3,4 the changeable mutation status over time,5,6 and 
poor DNA quality.7,8 Most importantly, many patients 
with an EGFR mutation develop disease progression 
within 9–15 months after receiving EGFR-tyrosine kinase 
inhibitors (TKIs).9 This suggests the need for stratifying 
EGFR-mutant genotypes according to their prognosis to 

targeted therapy, which cannot be assessed through gene 
sequencing. Consequently, a non-invasive method that 
can detect EGFR genotype and stratify patients with an 
EGFR mutation according to their therapeutic response 
to EGFR-TKIs is needed to assist decision making in 
targeted therapy, which is a great supplement to gene 
sequencing.

Artificial intelligence combined with CT imaging has 
shown promising results for non-invasively analysing 
lung cancer,3,10,11 providing an alternative to analysing the 
whole tumour and its microenvironment with no 
additional cost.

Previous studies adopted tumour-based methods to 
extract tumour features in CT imaging for predicting 
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EGFR mutation status, using either the quantitative 
radiomic method or a deep learning model. Radiomic 
methods first extract hand-crafted image features of the 
tumour and then select some important features to train 
a machine learning model to predict EGFR genotype.7,12 
Deep learning methods integrate feature extraction and 
model building processes into a unified convolutional 
neural network13,14 and can learn more effective features 
from tumour image automatically by changing the con
volutional neural network architecture.15 Most existing 
methods have only focused on analysing tumour tissues 
in CT imaging; however, many tissues and the environ
ment outside the tumour can also reflect genotype infor
mation and might affect therapeutic efficacy. For 
instance, previous studies have shown that the 
characteristics of lungs (eg, pleural retraction and conver
gence of surrounding vessels) are associated with EGFR 
genotype.16–19 Additionally, lung functional changes or 
abnormalities might also affect treatment efficacy, which 
are ignored in tumour-based methods. Most importantly, 
previous studies only predicted EGFR mutation status, 
but they had weak ability to stratify EGFR-mutant 
genotype according to their prognosis for targeted 
therapy. Moreover, previous tumour-based methods 
relied on time-consuming image annotation and were 
validated in small retrospective datasets (fewer than 
1000 patients); a fully automated method that is validated 

in large, prospective datasets including different 
ethnicities is more desired for clinical practice. Lastly, the 
associations between high-dimensional CT features and 
genetic-level mechanisms remain unclear to clinicians.

In this study, we propose that genotype and prognostic 
information can be mined from the whole lung and thus, 
we aimed to build a novel, fully automated artificial 
intelligence system (FAIS) that mines whole-lung 
information to predict EGFR genotype and progression-
free survival (PFS) of patients after receiving EGFR-TKIs, 
focused on providing a non-invasive and convenient 
method that is validated in a large cohort to assist 
targeted therapy planning. We also aimed to explore 
biological mechanisms of artificial intelligence methods 
in inferencing genetic activities.

Methods
Study design and participants
The overall study design is captured in figure 1. With 
approval of the ethics committee of the hospitals, we 
included 18 232 patients with lung cancer from nine 
cohorts (table 1), including seven retrospective cohorts 
collected from eight provinces in China, the public The 
Cancer Imaging Archive (TCIA) cohort comprising a 
White population in the USA, and a prospective cohort 
from China. EGFR gene sequencing results and CT 
images at diagnosis time (20 319 CT sequences) were 

Research in context

Evidence before this study
We searched PubMed on Aug 9, 2021, for research articles that 
contained the terms “EGFR mutation” AND “whole-lung 
analysis” AND (“artificial intelligence” OR “deep learning”) AND 
“lung cancer”, without date or language restrictions. We found 
no studies using a whole-lung analysis method to predict 
epidermal growth factor receptor (EGFR) genotype in lung 
cancer. We further searched the terms “EGFR mutation” AND 
(“artificial intelligence” OR “deep learning”) AND “lung cancer” 
AND “CT”. We found 14 studies that used deep learning and CT 
imaging to predict EGFR mutation status in patients with lung 
cancer. The largest dataset obtained so far included 
914 patients in a retrospective cohort from an Asian 
population, without a large-scale, prospective, and global 
dataset for a thorough validation. Moreover, the published 
studies used tumour-based methods, which require manual 
tumour annotation in CT images, making the methods 
inconvenient to use in clinical practice. Some global lung 
characteristics have been reported to be associated with EGFR 
genotype and can affect treatment response; however, this 
information is ignored in tumour-based analyses. Additionally, 
these studies predicted EGFR mutation status alone, and did 
not identify patients with an EGFR mutation who are at high 
risk of having resistance to tyrosine kinase inhibitors (TKIs). 
The biological mechanisms behind the prognostic value of CT 
features also needs further exploration and explanation.

Added value of this study
We proposed a novel fully automated artificial intelligence system 
(FAIS) to mine whole-lung information for genotype analysis, 
which outperformed commonly used tumour-based deep 
learning methods. This system was trained and validated in large-
scale datasets, which are nearly 20-times larger than previous 
studies. Moreover, FAIS learned to identify patients with an EGFR 
mutation who are at high risk of having TKI resistance, which is a 
good supplement to gene sequencing. Furthermore, we assessed 
global lung features using gene pathway analysis in 
RNA-sequencing data, and we observed associations between the 
CT imaging phenotype mined in the whole lung and drug 
resistance or cancer progression mechanisms.

Implications of all the available evidence
FAIS provides a very convenient method to non-invasively 
detect EGFR genotype and identify patients with an EGFR 
mutation who are at high risk of having TKI resistance. 
The superior performance of the whole-lung analysis over the 
commonly used tumour-based methods suggests that 
genotype and prognostic information correlates with macro-
level changes in the whole lung instead of only in tumour 
tissues. Further gene pathway analysis identified several 
biological mechanisms involved in the association between 
global lung characteristics and genetic activities.
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obtained for all patients. Each cohort was collected from 
a different centre. The primary cohort A, prospective 
testing cohort, testing cohort A, and TCIA cohort 
included only thick CT images. The primary cohort B, 
validation cohort B, and testing cohorts B to D included 
only thin CT images. Detailed inclusion criteria and data 
sources are presented in the appendix (p 2).

In clinical practice, CT scanning protocols are highly 
variable in different hospitals, and CT slice thickness has 
the largest effect on artificial intelligence-based methods.20 
Consequently, we divided CT images into two categories, 
thick CT (≥3·75 mm) and thin CT (<3·75 mm), and we 

trained and tested the proposed model using both thick 
CT and thin CT. In thick CT images, primary cohort A 
was randomly split into training, internal validation, and 
internal testing sets at a ratio of 8:1:1 for model training, 
hyper-parameter tuning, and internal testing. We used 
the testing cohort A and the TCIA cohort for independent 
testing in both Asian and White populations; the 
prospective testing cohort was used for prospective 
testing (figure 1). In thin CT images, we used primary 
cohort B for model training and validation cohort B for 
model hyper-parameter tuning; testing cohorts B to D 
were used for multicentre independent testing. We used 

Figure 1: Workflow of the proposed FAIS and study design
(A) Inference process of FAIS in predicting EGFR genotype and PFS in patients after receiving EGFR-TKIs. (B) Mining associations between genetic activities and 
whole-lung features extracted by FAIS. (C) Cohorts used in this study. 2087 patients were included in both the primary cohort A and primary cohort B since they had 
both thick CT and thin CT. PFS cohort is a subset of primary cohort A. EGFR=epidermal growth factor receptor. FAIS=fully automated artificial intelligence system. 
PFS=progression-free survival. TKIs=tyrosine kinase inhibitors.
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the PFS cohort to assess performance of the proposed 
model in predicting personalised PFS in patients 
receiving EGFR-TKIs; this cohort is a subset of the 
primary cohort A and also includes training, validation, 
and testing sets (appendix p 2).

Development of the FAIS
The FAIS included two main components: automated 
lung segmentation and EGFR genotype prediction 
(appendix p 10). Without manual annotation, FAIS 
imported original chest CT images of a patient, and 
directly predicted the corresponding EGFR-mutant 
probability; for a patient with an EGFR mutation, FAIS 
also predicted their PFS after receiving EGFR-TKIs.

We first used the DenseNet121-FPN model21–23 to 
segment lung areas in chest CT images automatically 
(appendix pp 3–4). To guarantee the acquisition of the 
complete lung field, we used a three-dimensional 

bounding box of the segmented lung mask to crop the 
whole lung area within the CT image, which was defined 
as a lung region of interest. Afterward, this region of 
interest was standardised with Z scores and resized to 
48 × 240 × 360 voxels for further analysis by our proposed 
EGFRNet. EGFRNet consists of four dense blocks, where 
each block is a stack of convolution, batch normalisation, 
and activation layer. After the last convolutional layer, we 
used average pooling to generate 768-dimensional deep 
learning features (appendix pp 10, 13), which were fully 
connected to the output neuron for predicting the 
probability (FAIS score) of a given patient having an 
EGFR mutation.

Notably, in the lung region of interest, some other 
organs (eg, spine) were included. To enable EGFRNet to 
focus on lung areas, we proposed a lung mask-guided 
attention mechanism, which enhanced the response of 
the lung area and suppressed the non-lung areas 
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CT thickness Thick CT Thick CT Thick CT Thick CT Thin CT Thin CT Thin CT Thin CT Thin CT Thick CT

Data source Sichuan Liaoning Sichuan USA Sichuan, 
Guangdong

Anhui Shanghai Beijing, 
Shandong

Yunnan Sichuan

Age, years 59·00  
(51·00–66·00)

63·00  
(55·00–69·00)

59·00  
(51·50–67·00)

68·00 
(64·00–74·75)

60·00  
(52·00–67·00)

62·00  
(54·50–66·00)

63·00  
(55·00–68·00)

61·00  
(53·00–67·00)

56·00  
(49·00–63·00)

59·00  
(50·00–67·00)

Sex

Female 3250 (46·1%) 560 (61·6%) 428 (48·0%) 52 (33·8%) 2231 (46·7%) 49 (45·8%) 2319 (50·9%) 595 (53·5%) 375 (49·9%) 349 (58·2%)

Male 3805 (53·9%) 349 (38·4%) 463 (52·0%) 102 (66·2%) 2551 (53·3%) 58 (54·2%) 2238 (49·1%) 518 (46·5%) 376 (50·1%) 251 (41·8%)

Stage

I–III 3988 (56·5%) 570 (62·7%) 579 (65·0%) 104 (67·5%) 3725 (77·9%) 70 (65·4%) 4315 (94·7%) 772 (69·4%) 453 (60·3%) 57 (9·5%)

IV 3027 (42·9%) 313 (34·4%) 312 (35·0%) 4 (2·6%) 1000 (20·9%) 36 (33·6%) 1 (<0·1%) 237 (21·3%) 293 (39·0%) 540 (90·0%)

NA 40 (0·6%) 26 (2·9%) 0 46 (29·9%) 57 (1·2%) 1 (0·9%) 241 (5·3%) 104(9·3%) 5 (0·7%) 3 (0·5%)

Smoking status

Former 2758 (39·1%) 155 (17·1%) 203 (22·8%) 115 (74·7%) 1525 (31·9%) 25 (23·4%) 798 (17·5%) 331 (29·7%) 279 (37·2%) 150 (25·0%)

Never 3834 (54·3%) 738 (81·2%) 688 (77·2%) 39 (25·3%) 3004 (62·8%) 81 (75·7%) 3591 (78·8%) 687 (61·7%) 472 (62·8%) 407 (67·8%)

NA 463 (6·6%) 16 (1·8%) 0 0 253 (5·3%) 1 (0·9%) 168 (3·7%) 95 (8·5%) 0 43 (7·2%)

Histology

Adenocarcinoma 5979 (84·7%) 885 (97·4%) 756 (84·8%) 135 (87·7%) 3632 (76·0%) 80 (74·8%) 3709 (81·4%) 1038 (93·3%) 671 (89·3%) 574 (95·7%)

SCC 723 (10·2%) 9 (1·0%) 97 (10·9%) 16 (10·4%) 293 (6·1%) 12 (11·2%) 558 (12·2%) 51 (4·6%) 50 (6·7%) 16 (2·7%)

Others 353 (5·0%) 15 (1·7%) 38 (4·3%) 3 (1·9%) 857 (17·9%) 15 (14·0%) 290 (6·4%) 24 (2·2%) 30 (4·0%) 10 (1·7%)

Tumour location

Left 2920 (41·4%) 350 (38·5%) 377 (42·3%) NA 1952 (40·8%) 38 (35·5%) 1868 (41·0%) 496 (44·6%) 296 (39·4%) 246 (41·0%)

Right 4088 (57·9%) 541 (59·5%) 511 (57·4%) NA 2812 (58·8%) 61 (57·0%) 2625 (57·6%) 611 (54·9%) 451 (60·1%) 350 (58·3%)

Bilateral 47 (0·7%) 18 (2·0%) 3 (0·3%) NA 18 (0·4%) 8 (7·5%) 64 (1·4%) 6 (0·5%) 4 (0·5%) 4 (0·7%)

Tumour family history

Yes 1138 (16·1%) 98 (10·8%) 116 (13·0%) NA 550 (11·5%) 4 (3·7%) 21 (0·5%) 129 (11·6%) 46 (6·1%) 119 (19·8%)

No 5457 (77·3%) 795 (87·5%) 775 (87·0%) NA 3981 (83·2%) 102 (95·3%) 4361 (95·7%) 890 (80·0%) 701 (93·3%) 438 (73·0%)

NA 460 (6·5%) 16 (1·8%) 0 NA 251 (5·2%) 1 (0·9%) 175 (3·8%) 94 (8·4%) 4 (0·5%) 43 (7·2%)

EGFR genotype

Mutant 3481 (49·3%) 367 (40·4%) 439 (49·3%) 39 (25·3%) 2917 (61·0%) 55 (51·4%) 2650 (58·2%) 741 (66·6%) 364 (48·5%) 600 (100%)

Wild type 3574 (50·7%) 542 (59·6%) 452 (50·7%) 115 (74·7%) 1865 (39·0%) 52 (48·6%) 1907 (41·8%) 372 (33·4%) 387 (51·5%) 0

Data are n (%) or mean (SD). EGFR=epidermal growth factor receptor. NA=not applicable. PFS=progression-free survival. SCC=squamous cell carcinoma. TCIA=The Cancer Imaging Archive. 

Table 1: Characteristics of patients in the ten cohorts
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(appendix p 5). During model training, we proposed an 
area under the curve (AUC) loss function that calculated 
the approximated AUC error in a training batch for 
auxiliary training (appendix pp 6–7).24 After model 
training, we used the Grad-CAM25 algorithm to visualise 
the EGFR mutation-relevant lung characteristics dis
covered by FAIS.

To compare the advantage of FAIS over the commonly 
used tumour-based methods, we built two tumour-based 
deep learning models as comparisons (appendix p 8), 
and we compared their performance in the primary 
cohort A and the TCIA cohort.

Development of the FAIS-C model
Some clinical factors have been reported to be associated 
with EGFR mutations;7,8 consequently, we incorporated 
clinical factors and the FAIS score to build the FAIS-C 
model. First, we used multivariate least absolute shrinkage 
and selection operator (LASSO) to select diagnostic clinical 
factors from a list of clinical factors collected including age, 
sex, tumour stage, smoking status, histology, tumour 
location, and tumour family history (table 1). Second, the 
selected clinical factors and the FAIS score were sent into a 
support vector machine to build the FAIS-C model for 
EGFR genotype prediction. All these procedures were 
done in the training set in primary cohort A. For some 
patients with missing clinical values, we used the mean 
value or the categorical value with the highest frequency in 
the training set for imputation.

PFS prediction using FAIS
Among the 768-dimensional deep learning features 
extracted by FAIS, we used LASSO-Cox regression to 
select prognostic features for predicting personalised 
PFS in patients after receiving EGFR-TKIs, using the 
training set in the PFS cohort. Finally, the LASSO-Cox 
model generated a risk score for each patient by use of 
the selected prognostic features. A larger risk score 
indicates increased risk of disease progression and 
corresponds to a shorter PFS. To stratify patients into 
high-risk and low-risk groups, we used the X-tile software 
(version 3.6.1) to select the optimal cutoff risk score using 
the training set data; this cutoff value was subsequently 
used in the validation and testing sets for model 
performance evaluation.

Exploring biological mechanisms of the whole-lung 
features
We included 891 patients who underwent eight-panel or 
56-panel next generation sequencing in the primary cohort 
A to explore the associations between the 768-dimensional 
deep learning features and 56 common genotypes. For 
each genotype, we used independent sample t tests or 
Wilcoxon tests to examine whether a deep learning feature 
had significant difference between the mutant and wild-
type groups. This process was repeated for each deep 
learning feature and each of the 56 genes.

To explore the biological mechanisms of the prognostic 
value of FAIS, we included 87 patients in the TCIA cohort 
that had both RNA-sequencing data and CT imaging for 
analysis. We first used FAIS to extract the prognostic 
deep learning features of the patients from the whole 
lung, and then we did gene pathway analysis to examine 
the associations between the prognostic deep learning 
features and important gene pathways (appendix p 9).

Statistical analysis
Statistical analysis was done with Python, version 3.7. To 
evaluate performance of FAIS, the FAIS-C model, and 
tumour-based deep learning models, we used AUC, 
accuracy, F1 score, precision, and recall as measures. 
When evaluating prognostic performance of FAIS, we 
used Kaplan-Meier analysis and log-rank test to assess 
whether PFS of the high-risk and low-risk groups 
identified by FAIS had significant differences. All 
statistical results were considered significant at p<0·05.

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results
In thick CT images, FAIS achieved AUC values of 0·779 
(95% CI 0·761–0·795) in the internal validation set, 
0·759 (0·742–0·777) in the internal testing set, 0·770 
(0·753–0·786) in the testing cohort A, 0·756 
(0·742–0·772) in the prospective testing cohort, and 
0·755 (0·709–0·798) in the TCIA cohort (table 2). 
Notably, FAIS with the proposed lung mask-guided 
attention mechanism and AUC loss function showed 
improved performance in the TCIA cohort (appendix p 11). 
As adenocarcinoma accounts for 80% of lung cancer 
cases and responds well to EGFR-targeted therapy, we 
did a stratified analysis to examine performance of FAIS 
in lung adenocarcinoma and achieved similar results 
(appendix p 14).

In thin CT images, FAIS achieved AUC values of 0·813 
(0·773–0·853) in the validation cohort B, 0·761 
(0·755–0·768) in the testing cohort B, 0·797 (0·784–0·812) 
in the testing cohort C, and 0·748 (0·732–0·765) in the 
testing cohort D (table 2). In all the centres including 
thick and thin CT images, FAIS achieved stable perfor
mance, indicating the robustness of FAIS regarding 
various CT scanning protocols.

In the FAIS-C model, three clinical factors (smoking 
status, sex, and histological subtype) were ultimately 
selected as important diagnostic factors. By combining 
the FAIS score and the three clinical factors, the FAIS-C 
model achieved AUC values of 0·834 (0·795–0·872) in 
the validation cohort B, 0·788 (0·773–0·802) in the 
prospective testing cohort, 0·776 (0·738–0·816) in the 
TCIA cohort, 0·764 (0·747–0·780) in the testing cohort A, 
0·800 (0·793–0·807) in the testing cohort B, 0·812 
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(0·799–0·827) in the testing cohort C, and 0·763 
(0·746–0·779) in the testing cohort D (table 2).

As a comparison, the commonly used tumour-based 
deep learning models (two-dimensional or three-dimen
sional) showed a somewhat poorer performance (table 2). 
We further compared performance of FAIS with that of 
the tumour-based deep learning model (three-dimen
sional) regarding different training data amounts. Both 
models performed better as the training set size increased 
(appendix p 11). However, regardless of the training set 
size, FAIS always outperformed the tumour-based deep 
learning model, indicating that the presence of an EGFR 
mutation was correlated with macro-level changes in the 
whole lung instead of in tumour tissues alone.

Consistent with our hypothesis, in many patients, 
regions identified as EGFR mutation-relevant by FAIS 
were within the tumour area (figure 2A, B) because gene 
mutation occurs mainly in tumour cells. However, our 
results suggest that some functional or structural 
changes in non-tumour tissues of the lungs might be 
correlated with EGFR mutation. In some cases, FAIS 
discovered that the interaction between a tumour and its 
surrounding tissues was important for inferencing 
EGFR genotype. For instance, vascular convergence 
around the tumour (figure 2C, D), pleural retraction 
(figure 2E, F), and invasion (figure 2G, H) were associated 
with EGFR genotype inferenced by FAIS. 

To better understand the advantages of whole-lung 
analysis over the commonly used tumour-based analysis, 
we visualised the response of several neuron layers 
(structures comprising small computational nodes to 
extract features) in FAIS (defined as deep learning 
features) to CT images of different patients (appendix 
p 12). On the one hand, in each neuron layer, some deep 
learning features automatically focused on the tumour 
area to mine high-dimensional information from the 
tumour and its microenvironment. On the other hand, 
other features extracted complementary information 
focusing on global lung appearance and functional 
change. In the last FAIS layer, the deep learning features 
showed strong associations with EGFR genotype, in 
which patients in the same class remained clustered and 
clearly separated from those in the other class (appendix 
p 12).

Although all patients in the PFS cohort were confirmed 
to have an EGFR mutation, they had a large variance in 
PFS after receiving EGFR-TKIs (median 11·42 months, 
IQR 6·16–18·20), indicating the necessity of stratifying 
EGFR-mutant genotype according to patients’ therapeutic 
response to targeted therapy. Among patients with an 
EGFR mutation confirmed by gene sequencing, we 
found that patients predicted to have wild-type EGFR by 
the FAIS-C model had a shorter PFS than those predicted 
to have an EGFR mutation (median 8·40 months, 
4·63–15·87, vs 12·03 months, 7·03–18·9, log-rank 
p=0·0019, figure 3A). Consequently, the FAIS-C model 
learned to stratify the EGFR-mutant genotype according 

AUC 
(95% CI)

Accuracy 
(95% CI)

F1 score 
(95% CI)

Precision 
(95% CI)

Recall 
(95% CI)

FAIS

Primary A—
validation

0·779 
(0·761–0·795)

0·711 
(0·693–0·727)

0·711 
(0·693–0·727)

0·712 
(0·696–0·729)

0·711 
(0·693–0·727)

Primary A—
testing

0·759 
(0·742–0·777)

0·685 
(0·668–0·703)

0·685 
(0·668–0·703)

0·687 
(0·671–0·706)

0·685 
(0·668–0·703)

Testing A 0·770 
(0·753–0·786)

0·723 
(0·709–0·737)

0·724 
(0·710–0·739)

0·728 
(0·714–0·743)

0·723 
(0·709–0·737)

Prospective 
testing

0·756 
(0·742–0·772)

0·697 
(0·683–0·711)

0·697 
(0·682–0·711)

0·697 
(0·683–0·712)

0·697 
(0·683–0·711)

TCIA 0·755 
(0·709–0·798)

0·688 
(0·650–0·725)

0·708 
(0·673–0·742)

0·778 
(0·744–0·813)

0·688 
(0·650–0·725)

Validation B 0·813 
(0·773–0·853)

0·729 
(0·685–0·770)

0·725 
(0·680–0·767)

0·738 
(0·699–0·782)

0·729 
(0·685–0·770)

Testing B 0·761 
(0·755–0·768)

0·704 
(0·698–0·711)

0·702 
(0·696–0·709)

0·702 
(0·696–0·709)

0·704 
(0·698–0·711)

Testing C 0·797 
(0·784–0·812)

0·731 
(0·719–0·745)

0·735 
(0·723–0·748)

0·743 
(0·731–0·756)

0·731 
(0·719–0·745)

Testing D 0·748 
(0·732–0·765)

0·674 
(0·658–0·690)

0·673 
(0·656–0·689)

0·679 
(0·663–0·696)

0·674 
(0·658–0·690)

FAIS-C model

Primary A—
validation

0·803 
(0·787–0·819)

0·708 
(0·690–0·724)

0·707 
(0·690–0·724)

0·712 
(0·695–0·729)

0·708 
(0·690–0·724)

Primary A—
testing

0·797 
(0·780–0·814)

0·725 
(0·708–0·742)

0·725 
(0·708–0·742)

0·730 
(0·715–0·748)

0·725 
(0·708–0·742)

Testing A 0·764 
(0·747–0·780)

0·729 
(0·714–0·743)

0·732 
(0·716–0·745)

0·741 
(0·727–0·756)

0·729 
(0·714–0·743)

Prospective 
testing

0·788 
(0·773–0·802)

0·709 
(0·694–0·724)

0·709 
(0·694–0·724)

0·711 
(0·697–0·727)

0·709 
(0·694–0·724)

TCIA 0·776 
(0·738–0·816)

0·669 
(0·632–0·706)

0·690 
(0·657–0·725)

0·770 
(0·740–0·806)

0·669 
(0·632–0·706)

Validation B 0·834 
(0·795–0·872)

0·757 
(0·717–0·797)

0·756 
(0·717–0·797)

0·758 
(0·722–0·802)

0·757 
(0·717–0·797)

Testing B 0·800 
(0·793–0·807)

0·747 
(0·740–0·753)

0·744 
(0·737–0·750)

0·745 
(0·738–0·751)

0·747 
(0·740–0·753)

Testing C 0·812 
(0·799–0·827)

0·763 
(0·751–0·776)

0·764 
(0·752–0·777)

0·765 
(0·754–0·779)

0·763 
(0·751–0·776)

Testing D 0·763 
(0·746–0·779)

0·676 
(0·660–0·694)

0·674 
(0·658–0·692)

0·685 
(0·669–0·703)

0·676 
(0·660–0·694)

Tumour-based deep learning model (2D)

Primary A—
validation

0·708 
(0·689–0·728)

0·652 
(0·634–0·671)

0·652 
(0·634–0·670)

0·657 
(0·639–0·676)

0·652 
(0·634–0·671)

Primary A—
testing

0·758 
(0·740–0·775)

0·697 
(0·680–0·715)

0·696 
(0·679–0·714)

0·707 
(0·690–0·725)

0·697 
(0·680–0·715)

TCIA 0·637 
(0·589–0·686)

0·608 
(0·569–0·647)

0·633 
(0·597–0·669)

0·738 
(0·703–0·778)

0·608 
(0·569–0·647)

Tumour-based deep learning model (3D)

Primary A—
validation

0·712 
(0·693–0·729)

0·662 
(0·645–0·678)

0·662 
(0·644–0·678)

0·667 
(0·649–0·683)

0·662 
(0·645–0·678)

Primary A—
testing

0·728 
(0·710–0·748)

0·678 
(0·661–0·696)

0·678 
(0·661–0·695)

0·683 
(0·667–0·702)

0·678 
(0·661–0·696)

TCIA 0·653 
(0·607–0·698)

0·581 
(0·542–0·622)

0·599 
(0·560–0·637)

0·709 
(0·670–0·748)

0·581 
(0·542–0·622)

2D=two-dimensional. 3D=three-dimensional. AUC=area under the curve. EGFR=epidermal growth factor receptor. 
FAIS=fully automated artificial intelligence system. TCIA=The Cancer Imaging Archive.

Table 2: The performance of different models in predicting EGFR genotype
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to their prognosis to targeted therapy, which is a valuable 
supplement to gene sequencing.

The prognostic value of the FAIS-C model indicates 
that some of the 768-dimensional deep learning features 
in FAIS are able to convey prognostic information about 
EGFR-targeted therapy. We found 29 prognostic features 
that showed strong associations with the PFS of patients 
receiving EGFR-TKIs (appendix p 15). Relying only on 
the 29 prognostic deep learning features, the model was 
able to stratify patients with an EGFR mutation into 
high-risk and low-risk groups indicating their risk of 
disease progression after treatment (log-rank p<0·0001, 
p=0·035, and p=0·023; figure 3B–D).

Previous studies suggested the use of EGFR mutation 
subtypes to stratify EGFR-mutant genotype. For example, 
patients with exon 19 deletions (EGFR¹⁹del) have the best 
prognosis with EGFR-TKI treatment, followed by L858R 
point mutation in exon 21 (EGFRL⁸⁵⁸R), whereas other 
uncommon subtypes (eg, EGFRG⁷¹⁹X, EGFRL⁸⁶¹Q, and 
EGFRS⁷⁶⁸I) were associated with a poorer prognosis.26,27 
However, we found no significant difference in patients’ 
PFS between these three mutation subtypes (figure 3E). 
Moreover, we found that each mutation subtype contained 
patients with poor prognosis and good prognosis, and 
FAIS was able to stratify patients with different prognosis 
in each mutation subtype. For instance, although patients 
with EGFR¹⁹del or EGFRL⁸⁵⁸R showed good prognosis to 
EGFR-TKI treatment in previous studies, FAIS identified 
high-risk groups with poor PFS in these two subtypes 

(median 8·50 months, 5·07–12·53, with EGFR¹⁹del and 
8·43 months, 4·35–11·92, with EGFRL⁸⁵⁸R, figure 3F). In 
uncommon EGFR subtypes (denoted as EGFRuncommon), 
FAIS stratified patients into two groups, with the high-
risk group showing a short PFS (5·87 months, 3·85–8·50) 
whereas the low-risk group showed a better prognosis 
(21·20 months, 13·30–33·08) than that with the EGFR¹⁹del 
and EGFRL⁸⁵⁸R subtypes. 

In the 891 patients in primary cohort A who underwent 
eight-panel or 56-panel next generation sequencing, we 
found that many deep learning features extracted from 
the whole lung were associated with multiple genes 
(figure 4A). Moreover, 75 deep learning features were 
significantly associated with more than one gene, 
suggesting that interactions between genes might exist 
and can be captured by FAIS.

Notably, we found that the 29 prognostic deep learning 
features in FAIS were associated with multiple genes 
that can affect the prognosis of patients receiving EGFR-
TKIs (EGFR, KRAS, ALK, BRAF, and ROS1; figure 4B). 
Moreover, gene pathway analysis in the TCIA cohort 
revealed that four prognostic deep learning features were 
strongly associated with gene pathways linked to drug 
resistance or cancer progression. This finding might 
explain why deep learning features were able to predict a 
personalised prognosis to EGFR-TKI treatment. For 
example, the 341 deep learning feature corresponded to 
the upregulated P53 pathway, and the 716 deep learning 
feature corresponded to the upregulated ERBB pathway. 

Figure 2: EGFR mutation-relevant lung characteristics discovered by FAIS
The figure presents CT images from eight patients. Bright red colour represents high association with EGFR genotype, and dark blue colour represents weak 
association. EGFR=epidermal growth factor receptor. FAIS=fully automated artificial intelligence system.

A C

E G

B D

F H
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Figure 3: Kaplan-Meier 
analysis in the PFS cohort

The figure presents Kaplan-
Meier curves of the EGFR-

mutant and EGFR-wild type 
groups predicted by the FAIS-C 
model (A); of the high-risk and 
low-risk groups in the training 
set (B), validation set (C), and 

testing set (D); of EGFR¹⁹del, 
EGFRL⁸⁵⁸R, and EGFRuncommon 

subtypes (E); and of the high-
risk and low-risk groups 

stratified by FAIS in each EGFR 
mutation subtype (F). Vertical 
lines represent censored data. 

Log-rank test was used to 
assess the difference of PFS 

between different groups. 
EGFR=epidermal growth 

factor receptor. FAIS=fully 
automated artificial 
intelligence system. 

HR=hazard ratio. 
PFS=progression-free survival.
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Figure 4: Association 
between genetic activities 
and deep learning features 
extracted from the whole 
lung
The figure presents the 
association between each 
deep learning feature and the 
mutation status of 
56 genes (A) and the 
association between the 
29 prognostic deep learning 
features and the five genes 
linked to the prognosis with 
epidermal growth factor 
receptor-tyrosine kinase 
inhibitors (B). Lines between 
circles and blue boxes indicate 
significant association 
(p<0·05).
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These pathways were associated with a resistance 
mechanism to targeted therapy, suggesting that the 
341 and 716 deep learning features might convey 
information about the risk of drug resistance. Similarly, 
the 118 deep learning feature was associated with the cell 
adhesion molecular pathway, which is a sign of cancer 
metastasis. The 113 deep learning feature was associated 
with the ECM receptor interaction pathway, which is part 
of the epithelial mesenchymal transition mechanism, 
previously linked to cancer progression. 

Except for mining genotype and prognostic information, 
whole-lung analysis has good potential for analysing other 
clinical outcomes in lung cancer. For instance, we used 
FAIS to predict lung cancer metastasis and achieved AUC 
values of 0·826 in the internal validation set and 0·787 in 
the testing set in primary cohort A (appendix p 16), which 
outperformed the tumour-based deep learning 
model (0·765, 95% CI 0·748–0·781, in the internal 
validation set and 0·746, 0·727–0·765 in the testing set). 

Discussion
EGFR genotype and individualised prognosis to EGFR-
TKI treatment are crucial for targeted therapy planning in 
patients with lung cancer. Our findings suggest that 
routine CT imaging combined with a fully automated 
whole-lung analysis artificial intelligence system can non-
invasively predict EGFR genotype and identify patients 
with an EGFR mutation and with a poor prognosis to 
EGFR-TKI treatment. The performance improvement of 
FAIS-C model over FAIS suggests that CT imaging 
provides information that complements clinical factors.

Although gene sequencing is the gold standard for 
detecting genotypes, it faces the difficulties brought by 
tumour heterogeneity and invasive biopsy. Most 
importantly, gene sequencing cannot identify patients 
with poor prognosis to targeted therapy. In these 
situations, FAIS could be a good supplement to biopsy 
sequencing because EGFR genotype predicted by FAIS 
was significantly associated with patients’ prognosis with 
EGFR-TKI treatment. Patients confirmed to have an 
EGFR mutation by both gene sequencing and FAIS 
showed good prognosis to EGFR-targeted therapy 
(figure 3A). However, those with a confirmed EGFR 
mutation by gene sequencing, but who were predicted to 
have wild-type EGFR by FAIS showed a poor prognosis 
(figure 3A). Moreover, FAIS was able to predict 
personalised PFS for patients receiving EGFR-TKIs, 
providing a method to stratify EGFR-mutant genotype 
according to patients’ therapeutic response, which is a 
great supplement to gene sequencing.

By contrast with previous artificial intelligence-based 
studies, FAIS predicts EGFR genotype and personalised 
prognosis simultaneously, and it showed better perfor
mance than the commonly used tumour-based methods7,13 
in a large-scale cohort (18 232 patients, over 20-times larger 
than those of previous studies). Unlike the commonly 
used tumour-based deep learning model that only extracts 

tumour information, FAIS mines both tumour infor
mation and global lung information, thus achieving better 
performance. For instance, FAIS mines pleural 
characteristics for inferencing EGFR genotype in some 
patients (figure 2E–H). These findings are consistent with 
previous studies,16,17 where the rate of pleural retraction and 
invasion differed between patients with an EGFR mutation 
and those with wild-type EGFR. Notably, the EGFR 
mutation rate differs between ethnicities (about 15% in a 
White population and 50% in an Asian population).9,28,29 To 
assess the generalisability of the proposed model, we 
trained the model using data from an Asian population 
and tested it using data from a White population; FAIS 
performed well in these different populations. Moreover, 
this study included all types of lung cancer instead of only 
adenocarcinoma cases,7,13 eliminating the need to identify 
adenocarcinoma when using this system. FAIS is fully 
automated and does not require any time-consuming CT 
imaging annotation, which is more convenient for use in 
clinical practice. Most importantly, we found that genotype 
and prognostic information can be obtained from the 
whole lung instead of only from tumour tissues. The 
effectiveness of FAIS in predicting lung cancer metastasis 
further showed that many clinical outcomes of lung cancer 
are probably associated with the macro-level changes in 
the whole lung instead of only tumour tissues. 
Consequently, mining whole-lung information should 
have great potential in analysing lung cancer. 

Figure 4A showed that much genotype information can 
be captured by analysing the whole lung in CT imaging. 
Although FAIS was trained to predict EGFR genotype, 
the strong associations between the deep learning 
features and many other genes showed the potentiality of 
FAIS in predicting multiple gene markers in lung cancer. 
Further gene pathway analysis revealed that image 
features mined from the whole lung were associated 
with multiple important gene pathways linked to drug 
resistance or cancer progression mechanisms, which 
explains why the CT features mined from the whole lung 
conveyed prognostic information that complemented 
gene sequencing. The associations between CT-derived 
whole-lung features and gene pathways could help 
clinicians to better understand the inference process and 
biological mechanisms of FAIS.

Our study has several limitations. First, in addition to 
the EGFR genotype, other important genes are also 
relevant to targeted therapy, such as ALK and KRAS. A 
method of concurrently predicting several target genes 
would be valuable. Second, although whole-lung analysis 
performed better than the tumour-based method, a 
combination of these methods might achieve optimum 
performance and requires future research.

In conclusion, FAIS provides a non-invasive method to 
predict EGFR genotype and targeted therapy response 
through a whole-lung analysis method using CT images, 
which shows that genotype information can be obtained 
from the whole lung instead of only tumor tissues.
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