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Abstract

Purpose: We evaluated the performance of the newly pro-
posed radiomics of multiparametric MRI (RMM), developed
and validated based on a multicenter dataset adopting a
radiomic strategy, for pretreatment prediction of pathologic
complete response (pCR) to neoadjuvant chemotherapy
(NAC) in breast cancer.

Experimental Design: A total of 586 potentially eligible
patients were retrospectively enrolled from four hospitals
(primary cohort and external validation cohort 1–3). Quan-
titative imaging features were extracted from T2-weighted
imaging, diffusion-weighted imaging, and contrast-enhanced
T1-weighted imaging before NAC for each patient. With fea-
tures selected using a coarse to fine feature selection strategy,
four radiomic signatureswere constructed based on eachof the
three MRI sequences and their combination. RMM was devel-

oped based on the best radiomic signature incorporating
with independent clinicopathologic risk factors. The perfor-
mance of RMMwas assessed with respect to its discrimination
and clinical usefulness, and compared with that of clinical
information–based prediction model.

Results: Radiomic signature combining multiparametric
MRI achieved an AUC of 0.79 (the highest among the four
radiomic signatures). The signature further achieved good
performances in hormone receptor–positive and HER2-
negative group and triple-negative group. RMM yielded an
AUC of 0.86, which was significantly higher than that of
clinical model in two of the three external validation cohorts.

Conclusions: The study suggested a possibility that RMM
provided a potential tool to develop a model for predicting
pCR to NAC in breast cancer.

Introduction
Breast cancer has the highest incidence among cancers in

women worldwide (1). Neoadjuvant chemotherapy (NAC)
has been established as a standard treatment of care for most
breast cancers, especially locally advanced breast cancer (2).
NAC is able to downstage cancer, reduce metastasis, detect
drug sensitivity, and improve the possibility of breast-con-
serving therapy (3, 4). Ideally, it could imply an extremely
favorable disease-free and overall survival when a pathologic
complete response (pCR) is achieved after NAC (5). Thereaf-
ter, pCR could be proposed as a surrogate early clinical end-
point for long-term survival (6); however, there is still no
standard method to predict responses to NAC. As the outcome
of NAC tends to be varied across histopathologic and molec-
ular characteristics (7), it makes the quantitative pretreatment
prediction of pCR for better treatment planning even more
challenging.

Various prediction methods have been proposed to predict
the responses to NAC in patients with breast cancer, including
physical examination and medical imaging tests like mammog-
raphy, ultrasonography, diffuse optical spectroscopic (8), breast
MRI, and PET/CT (9, 10). Although MRI-based methods cannot
detect pCR with adequate accuracy (11), it is currently the most
accurate method for determining response to NAC (9, 10, 12).
Specifically, contrast-enhanced MRI was considered as the most
reliable technique for evaluating the responses to NAC (13, 14) at
present, as its measurements of perfusion and permeability of
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tissue microvessels are sensitive to angiogenic changes. However,
it is still difficult to use contrast-enhanced MRI for pretreatment
predicting of pCR. Diffusion-weighted imaging (DWI) quantita-
tively measured apparent diffusion coefficients (ADC), which
reflect the diffusivity of water and provided information on the
integrity of cell membranes and tumor cellularity. It is sensitive to
chemotherapy induced intratumoral changes, Hence, DWI may
provide complementary information for predicting responses to
chemotherapy (13, 15). Thus, multiparametric MRI combining
conventional T2-weighted imaging (T2WI), DWI, and contrast-
enhanced T1-weighted imaging (T1þC)may achieve better and a
more robust performance in predicting responses to NAC.

Radiomics is a rapidly emergingfield involving the extractionof
numerous quantitative features from multimodality medical
images to determine relationships between the features and the
underlying pathophysiology (16–19). Based on the concept that
biomedical images contain information that may reflect under-
lying pathophysiology and their relationships could be revealed
via quantitative image analyses (17), radiomics turns medical
images into minable data to improve diagnostic (20, 21), prog-
nostic (22), and predictive (23) accuracy, bridging the gap
between medical imaging and personalized medicine (24). In
addition, radiomics can combine clinical information and histo-
pathologic and molecular characteristics with multiple imaging
features to delivermore accuratemedical care (25). Radiomics can
also be used for assessing responses to antitumor therapy. Recent
studies have proposed radiomic approaches for predicting pCR to
neoadjuvant therapy in rectal cancer (26) and assessing response
to immunotherapy in solid tumors (27). Moreover, radiomics
was utilized in two studies with relatively small cohorts for
predicting pCR to NAC in breast cancer (28, 29). These studies
demonstrated the feasibility and potential benefits of using radio-
mics in pCR prediction in breast cancer. However, these studies
have small sample sizes and are not validated based on multi-
center dataset, with lack of comparison with results of clinical
information-based methods, and these may limit their clinical
application.

In this study, we proposed to develop a radiomic model
based on multiparametric MRI and clinical information for pre-

treatment pCR prediction in breast cancer, named radiomics of
multiparametric MRI (RMM), and validated it with a multicenter
dataset. We hypothesized that RMMwas with the potential in the
prediction of pCR to NAC in patients with breast cancer.

Materials and Methods
Study design

This was a multicenter study with patients retrospectively
enrolled from four Chinese hospitals in different regions of
China. A new approach named RMM integrating pretreatment
multiparametric MRI (T2WI, DWI, and T1þC) and clinical infor-
mation was proposed to predict pCR to NAC in patients with
primary invasive breast cancer. Histopathologic examination of
surgically resected specimens was used as the reference standard,
and RMM was compared with a clinical information-based pre-
dictionmodel andMRIpredictionmodels constructedwith T2WI,
DWI, and T1þC. This multicenter study was conducted in accor-
dance with the Declaration of Helsinki and was approved by
the ethics committee of each participating hospital, with the
requirement for informed consent waived.

Patients
The inclusion criteria were as follows: (i) the patient had

biopsy-proven unilateral primary invasive breast cancer without
distantmetastasis; (ii) the patient received complete NACwith no
prior treatment; (iii) surgery was performed after the completion
of NAC, after which pCR was confirmed by postoperative path-
ologic examination; and (iv) pretreatment breast MRI was con-
ducted before biopsy, including T2WI, DWI, and T1þC. The
exclusion criteria were (i) the patient was undergoing biopsy at
an external institution and pretreatment pathologic results were
not available; (ii) the patient did not complete NAC or had
nonstandard treatment (mainly referring to HER2-positive
tumors that were not treated with trastuzumab); (iii) the patient
was undergoing surgery at an external institution, or pCR was not
assessed; (iv) lack of pretreatment T2WI, DWI, or T1þC; (v)
insufficient MRI quality to obtain measurements (e.g., owing to
motion artifacts); and (vi) the patient had unilateral multifocal
cancers, and the correlation between the tumor in MRI and
postoperative pathologic examination was uncertain.

The data set with the most enrolled patients was used as the
primary cohort (PC) to reduce any form of overfitting or bias in
the analysis, and the other three data sets were used as indepen-
dent validation cohorts (VC1–VC3).

MRI data acquisition and IHC
Breast MR examination for each patient was performed before

biopsy andwithin 1 to 2weeks beforeNAC. Fat-suppressed T2WI,
DWI, and T1þC with fat suppression were acquired for each
patient in the four cohorts. An axial fat-suppressed T2WI sequence
was acquired before contrast medium administration. Then, an
initial fat-saturated T1WI precontrast scan was collected before
T1þC images scanning, and T1þC images were then acquired
following the intravenous injection of gadolinium contrast agent.
Finally, axial DWI imageswere obtained using two b values (0 and
1,000 s/mm2). The detailed parameters of MR images acquisition
of the four hospitals can be found in the Supplementary Infor-
mation and Supplementary Table S1.

The status of estrogen receptor (ER), progesterone receptor
(PR), and HER2, and the Ki67 index were determined by IHC.

Translational Relevance

In this study, we developed and validated radiomics of
multiparametric MRI (hereafter RMM) based on amulticenter
dataset for pretreatment prediction of pathologic complete
response (pCR) to neoadjuvant chemotherapy (NAC) in
breast cancer. Radiomic signature combining T2-weighted
imaging, diffusion-weighted imaging, and contrast-enhanced
T1-weighted imaging MRI showed good performance within
the primary and external validation cohorts. Moreover, the
radiomic signature yielded relatively well performances in
hormone receptor-positive and HER2-negative group and
triple-negative group. Furthermore, RMM incorporating
radiomic signature and clinical information showed improved
performance in predicting pCR to NAC compared with
a prediction model based on clinical information in the
multicenter dataset. The study suggested a possibility that
RMM provided a potential tool to develop a model for pre-
dicting pCR to NAC in breast cancer.

RMM for Pretreatment Prediction of pCR to NAC
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We defined tumors with <1% of tumor cells with nuclear staining
as ER/PRnegative and�1%of tumor cells with nuclear staining as
ER/PR positive (30); the cutoff for Ki67was set at 20%. For HER2,
tumorswith IHC staining of 0 or 1þwas defined asHER2negative
whereas tumors with IHC staining of 3þ was defined as HER2
positive. For tumors with IHC staining 2þ, further confirmation
was obtained with molecular testing (ISH testing): ISH non-
amplified results were defined as HER2 negative and ISH ampli-
fied results were considered HER2 positive.

NAC and pathologic assessment of response
All patients received four cycles, six cycles, or eight cycles of

NAC prior to breast surgery. Although there were some differ-
ences among the different hospitals, the treatment protocol
and timeline followed the National Comprehensive Cancer
Network (NCCN) guideline (2). The NAC regimens were
either taxane-based, anthracycline-based, or anthracycline
and taxane-based (detailed NAC regimens in each cohort
was shown in Supplementary Table S2). Additionally, HER2-
positive patients also received trastuzumab (8 mg/kg as the
loading dose and 6 mg/kg as the maintenance dose).

Standard histopathologic analysis was conducted in each par-
ticipating hospital for the pathologic assessment of response to
NAC. Surgically resected specimens were fixed in 10% neutral
buffered formalin and processed overnight in standard tissue
processors and slides were cut at 5 mm and stained an automated
staining system. The histopathologically examination and anal-
ysis were dedicated by breast pathologists (with at least a 10-year
experience in breast pathology)whowere blinded to theMRI data
from the participating hospitals. pCR was defined as the absence
of residual invasive carcinoma in the specimen (residual ductal
carcinoma in situ couldbepresent) and the absence of lymphnode
invasion in the ipsilateral sentinel node or lymph nodes removed
during axillary dissection (yPT0/isN0; refs. 31–33).

Tumor masking and inter- and intraobserver reproducibility
evaluation

Pretreatment MRI data from all participating hospitals were
collated for tumormasking and features extraction. The regions of
interest (ROI) were delineated manually via the itk-SNAP soft-
ware (www.itksnap.org) on each slice of the T2WI, DWI (b-value
of 1,000 s/mm2), and T1þC (the peak enhanced phase of the
multiphase contrast enhanced MRI selected according to the time
intensity curve) data by excluding the necrosis, air, and calcifica-
tion area. Because of the higher resolution of DWI in comparison
to ADC maps, ROIs were detected with a b-value of 1,000 s/mm2

first, and then copied to the corresponding ADCmaps for further
analysis. ROIs of breast cancer were manually drawn along the
contour of the tumor on T2WI (slightly high signal) and T1þC
(enhanced region) containing the surrounding chords and burrs,
and ROIs were also placed on the high signal intensity region on
DWI (b-value of 1,000 s/mm2).

Four radiologists (1 from each participating hospital) with at
least 10 years' experience in breast MR imaging were chiefly
responsible for the evaluation of tumor masking. Inter- and
intra-observer reproducibility of tumor masking and radiomic
feature extraction were initially analyzed with the T2WI data of
30 randomly selected patients for ROI-based radiomic feature
generation in a blinded fashion by these 4 radiologists.

To ensure reproducibility, each radiologist repeated the tumor
masking and generation of radiomic features twice with an

interval of at least 1 month, following the same procedure.
Intra-class correlation coefficients (ICCs) were utilized for
evaluating the intra- and inter-observer agreement in terms of
feature extraction. We interpreted an ICC of 0.81-1.00 as
almost perfect agreement, 0.61-0.80 as substantial agreement,
0.41-0.60 as moderate agreement, 0.21-0.40 as fair agreement,
and 0-0.20 as poor or no agreement (34). An ICC greater than 0.6
was considered a mark of satisfactory inter- and intraobserver
reproducibility.

To ensure the accuracy of tumor masking, the tumor masks
were evaluated by other radiologists from the same hospital for
each hospital, following the same guideline describing how to
define the boundary of tumors.

Radiomic feature extraction
Radiomic feature extraction was performed with MATLAB

2016b (Mathworks) using a toolbox developed in-house toolbox.
Each MRI scan of each patient was normalized with Z-scores in
order to get a standard normal distribution of image intensities.
Then, four groups of imaging features were extracted from each
normalized pretreatment MRI scan with manually segmented
ROIs: Group 1 comprised eight shape- and size-based features,
Group 2 comprised 17 first-order statistical features, Group 3 was
comprised of 90 textural features and 4,535 wavelet features
(4,280 features of Gabor-bank wavelet filtered images and
155 features of Law's filtered images). Group 1 quantitatively
described the three-dimensional size and shape of the tumor.
Group 2 consisted of quantified tumor intensity characteristics
with first-order statistics calculated from the histogram of all
tumor intensities. Group 3 comprised textual features based on
the quantification of intratumoral heterogeneity (i.e., differences
in texture observed within the tumor volume). Group 4 incor-
porated the calculated textural features from the wavelet decom-
positions of the original images, thereby focusing on the various
wave lengths and different feature orientation within the tumor
volume. All of these features have generally been used in previous
radiomic studies (20, 22, 26). The final feature set comprised
4,650 features for each MR sequence (T2WI, ADC, and T1þC),
resulting in a total of 13,950 radiomic features per patient.
Details of all feature-extracting algorithms are provided in the
Supplementary Information.

Radiomic signature construction and validation
Radiomic signatures based on single MR sequences and multi-

parametric MRI were constructed within the PC. Thus, four
radiomic signatures were generated (based on T2WI, DWI, T1þC,
andmultiparametric MRI combining the above three sequences),
and all of them were validated with the validation cohorts.

For the construction of radiomic signatures, the same coarse to
fine feature selection strategy was utilized to reduce any bias of
results and potential overfitting. First, univariate analysis was
performed with the Mann–Whitney U test to compare radiomic
features between pCR and non-pCR patients. All features were
ranked according to the P-value from theMann–WhitneyU test in
ascending order, and the top 5% of the features were used for
further analysis. Second, the Pearson correlation coefficient
between each pair of features was computed (denoted as r
thereafter). All pairs of features with |r| > 0.85 were detected, and
the feature in each of these pairs with the larger P-value from the
Mann–Whitney U test was deleted from the feature set. Finally, a
random forest based feature selectionmethod named Boruta (35)
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was used to detect the key features for pCR prediction. Boruta
could select all relevant features for prediction instead of only the
nonredundant ones.

With the selected key features, supporting vector machine
(SVM) models were used to construct radiomic signatures for
pCR prediction. SVM models with radial basis function kernel
were trained based on the PC, and a 10-fold cross validation was
used to determine the parameters of the SVM models. After a
model was trained, the radiomic score for each patient in
the validation cohort was computed. To assess the quantitative
prediction performance of the four radiomic signatures in the
primary and validation cohorts, ROC curves and area under
the ROC curves (AUC) were calculated in all these four cohorts.

Performance of radiomic signature according to breast cancer
subtype

Patients in each cohort were divided into subgroups according
to their breast cancer subtype. Patients with ER and/or PR positive
andHER2-negative breast cancer were grouped into the hormone
receptor (HR)-positive, HER2 negative (HRþ and HER2�) sub-
group. Patients with HER2-positive breast cancer were grouped
into the HER2þ subgroup and the remaining patients with ER�,
PR�, and HER2� breast cancer were grouped into the triple-
negative (TN) subgroup. The radiomic signature for each breast
cancer subtype was obtained by training the model with eight
selected features from themultiparametric MRI based on patients
of the corresponding subtype in the PC. The prediction perfor-
mance was tested with patients of the corresponding subtype in
the three validation cohorts.

RMM and its overall performance
The radiomic signature of multiparametric MRI was applied

with age, stage, ER status, PR status, HER2 status, and Ki-67 status
using multivariable logistic regression analysis to develop RMM
for pCR prediction based on the PC. Backward step-wise selection
was applied by using the likelihood ratio test with Akaike's
information criterion as the stopping rule to select correlated

factors of pCR (36, 37). The prediction results of RMM in
the validation cohorts were used to evaluate the performance
of RMM.

A clinical model was also constructed using multivariable
logistic regression analysis with age, stage, ER status, PR status,
HER2 status, and Ki-67 status. Thus, the prediction performance
of RMM was compared with that of the clinical model and
radiomic signatures.

Statistical analysis
Descriptive statistics were summarized as mean � SD. Com-

parisons between groups were made with the t test or Mann–
Whitney U test, when appropriate, for quantitative variables and
with the x2 test or Fisher's test for qualitative variables. AUC and
95% confidence interval (CI) calculated with Statistical Product
and Service Solutions (SPSS) were used to evaluate the perfor-
mance of each model for pCR prediction. Differences between
various AUCs were compared with the DeLong test (38). All
statistical tests were two sided and P values less than 0.05
indicating statistical significance. The statistical analyses were
performed using SPSS software, version 21 (SPSS).

Results
Clinical characteristics

As shown in Figure 1, a total of 586 potentially eligible patients
were consecutively enrolled in this study from the four partici-
pating hospitals, and 172 patients were excluded according to the
exclusion criteria. Thus, 414 patients were finally enrolled for
further analysis. The dataset from Guangdong General Hospital
had the highest number of eligible patients (128) andwas used as
the PC. The clinical characteristics of all patients are summarized
in Table 1 (Supplementary Table S3).

The pCR rate in the four cohorts was between 15% and 43%. In
all four cohorts, no significant differencewasdetectedbetween the
pCR and non-pCR groups in terms of age, stage and Ki-67 status
(P > 0.05) was detected. Meanwhile, pCR was found to be

Primary cohort
(Guangdong General Hospital)

Validation cohort 1
(Henan Cancer Hospital)

Validation cohort 2
(Yunnan Cancer Hospital)

Validation cohort 3
(Cancer Hospital Chinese Academy of Medical Sciences)

Patients with biopsy-proven unilateral primary
breast cancer without distant metastasis and

received complete NAC from September 2016 to
March 2018
n = 139

Patients with biopsy-proven unilateral primary
breast cancer without distant metastasis and

received complete NAC from December 2012 to
September 2017

n = 147

Patients with biopsy-proven unilateral primary
breast cancer without distant metastasis and

received complete NAC from December 2013 to
September 2017

n = 178

Nonstandard treatment (HER2-positive
tumors were not treated with

trastuzumab)
(n = 7)

Nonstandard treatment (HER2-positive
tumors were not treated with

trastuzumab)
(n = 44)

Nonstandard treatment (HER2-positive
tumors were not treated with

trastuzumab)
(n = 65)

Patients with pretreatment MRI data
(T2WI, DWI, and T1+C)

n = 132

Patients with pretreatment MRI data
(T2WI, DWI, and T1+C)

n = 103

Patients with pretreatment MRI data
(T2WI, DWI, and T1+C)

n = 113

Patients enrolled in this retrospective study
n = 128

Patients enrolled in this retrospective study
n = 99

Patients enrolled in this retrospective study
n = 107

Building
Validation

Radiomics of multiparametric MRI for pretreatment prediction of pCR to NAC in breast cancer

Validation Validation

Excluded for following reasons (n = 4):
••    Lack of DWI  data (n = 2)
•    Lack of T1+C (n = 1)
•    Insufficient MR image quality (n = 1)

Excluded for following reasons (n = 4):
•    Lack of DWI  data (n = 1)
•    Lack of high-resolution T2WI (n = 1)
•    Insufficient MR image quality (n = 2)

Excluded for following reasons (n = 6):
•    Lack of DWI  data (n = 2)
•    Lack of high-resolution T2WI (n = 1)
•    Insufficient MR image quality (n = 3)

Patients with biopsy-proven unilateral primary
breast cancer without distant metastasis and

received complete NAC from December 2014 to
September 2017

n = 122

Nonstandard treatment (HER2-positive
tumors were not treated with

trastuzumab)
(n = 36)

Patients with pretreatment MRI data
(T2WI, DWI, and T1+C)

n = 86

Patients enrolled in this retrospective study
n = 80

Excluded for following reasons (n = 6):
•    Lack of DWI  data (n = 3)
•    Lack of T1 + C (n = 1)
•    Insufficient MR image quality (n = 2)

Figure 1.

Patient recruitment and study design. In total, 414 of 586 patients with pretreatment multiparametric MRI from four Chinese hospitals were enrolled in this study
for model construction and validation.
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significantly associated with HER2 status only in the PC and VC
three but not in the other two validation cohorts. ER status and PR
status showed significant differences between the two groups in
the PC and in two and one of the validation cohorts, respectively.
The results suggested that pCR could be correlated with the status
ofmolecular receptors, whichwas consistentwith that of previous
studies (3, 5). Thereafter, a clinical model including the infor-
mation for pCR prediction was constructed subsequently as a
baseline to evaluate the RMM proposed in this study.

Feature discovery and radiomic signature construction and
validation

Satisfactory inter- and intraobserver reproducibility of tumor
masking and radiomic feature extraction was achieved with
ICC > 0.6 both among the masks from the four radiologists at
baseline and between the masks from the same radiologist at
baseline and at least 1 month later.

With the coarse to fine feature selection strategy, 7, 8, and 3
imaging features were finally selected from the T2WI, ADC
maps, and T1þC respectively for the construction of radiomic
signatures based on a single sequence, and eight imaging
features were selected from the full feature set including
features of the above three sequences to construct the radiomic
signature based on multiparametric MRI (Supplementary
Table S4). In the final step with Boruta, a set of features that
have confirmed or tentative association with pCR was selected
from each of the four feature sets for signatures construction
based on the PC (Fig. 2).

An SVMmodel was then constructed using the selected features
for each sequence and multiparametric MRI as a radiomic signa-
ture. The ROC curves and AUCs of the four radiomic signatures in
the PC and the external validation cohorts are shown in Figure
3A–D) and Supplementary Table S5. The multiparametric MRI-
based radiomic signature showedan improvedperformance,with
an AUC of 0.79 over the single sequence radiomic signatures
based on T2WI (AUC ¼ 0.69, P ¼ 0.042), ADC (AUC ¼ 0.69,
P ¼ 0.053), and T1þC (AUC ¼ 0.64, P ¼ 0.002) in the PC.
Although the performances of all radiomic signatures dropped in
the validation cohorts, the multiparametric MRI-based radiomic
signature outperformed all the single sequence radiomic signa-
tures with AUCs larger than or close to 0.7.

Performance of radiomic signature according to breast cancer
subtype

The ROC curves of radiomic signature based on multipara-
metric MRI within the three breast cancer subtypes in the primary
and validation cohorts are shown in Figure 4 (Supplementary
Table S6). Prediction within the HRþ and HER2�, and the
TN subgroups achieved good performance in the primary and
validation cohorts. In the HER2þ subgroup, although the signa-
ture had AUCs of 0.7 in the PC and 0.79 in VC1, the AUCs in VC2
and VC3 decreased to 0.58 and 0.62, respectively. Of particular
note, the AUCs of the radiomic signature for the TN subgroup in
the PC reached 0.96 and larger than or closed to 0.8 in all the three
validation cohorts.

RMM and its overall performance
The radiomic signature of multiparametric MRI, PR status, and

HER2 statuswere identified as independent predictors for thepCR
prediction model RMM (Fig. 3E–H; Supplementary Table S7)
withmultivariable logistic regression analysis. As shown in FigureTa
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Feature selection for construction of radiomic signatures with Boruta algorithm. Blue boxplots depict minimal, average, and maximum importance of a shadow
attribute. Yellow boxplots correspond to tentative features, whereas green ones represent confirmed features. Tentative and confirmed features were both
selected for further analysis. A, Eight imaging features were selected from the combination of T2WI, ADC, and T1þC for the radiomic signature. B, Seven imaging
features were selected from the sequence of T2WI for the radiomic signature. C, Eight imaging features were selected from the ADCmaps for the radiomic
signature. D, Three imaging features were selected from the sequence of T1þC for the radiomic signature.
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3E, RMM yielded a good prediction performance with an AUC of
0.86 in the PC. With a similar backward step-wise selection
method, ER status, PR status, and HER2 status were identified as
predictors for the clinical model of pCR prediction, which
achieved a performance with an AUC of 0.77 in the PC
(Fig. 3E). Using the DeLong test, the RMM showed significantly
higher AUC than that of both the multiparametric MRI-based
radiomic signature and the clinical model (P < 0.05) in the PC.
Good performance was also observed for pCR prediction in

validation cohorts; although the AUC of RMM dropped margin-
ally, the AUCs were larger than 0.7 in all three external validation
cohorts, which were the highest of the three models, although the
performances of clinical model and multiparametric MRI based
radiomic signature dropped more than RMM. The AUCs com-
parison in the validation cohorts showed that RMM achieved
significantly higher AUC than clinicalmodel in VC1 andVC2, and
it outperformed multiparametric MRI-based radiomic signature
in VC1 (Supplementary Table S8).
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ROC curves among different radiomic signatures and among different models.A–D, ROC curves of radiomic signatures based on single sequence and
multiparametric MRI for pCR prediction in the primary and validation cohorts. E–H, ROC curves of RMM, radiomic signatures, and clinical model for pCR
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ROC curves of radiomic signature based onmultiparametric MRI according to breast cancer subtypes in the primary and validation cohorts. A, ROC curve of
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Discussion
In this multicenter study, we investigated the ability of pre-

treatment multiparametric MRI-based radiomic analysis to pre-
dict pCR to NAC in patients with breast cancer. A model named
RMM was proposed with better performance in the primary and
majority of external validation cohorts compared with prediction
model based on clinical information. The outperformance of
RMM indicated that combining clinical information with multi-
parametric MRI could be helpful for the pretreatment prediction
of pCR to NAC in breast cancer.

The prediction ability of RMM was significantly improved
compared with that of other models including clinical model
and radiomic signatures based on multiple and single sequences
(P < 0.05) in the PC and two of the three external validation
cohorts. Although the AUCs of the clinical model and multi-
parametric MRI-based radiomic signature reached 0.77 and 0.79
in the PC, they were unable to perform robustly in all validation
cohorts. Specifically, the AUC of the clinical model in VC2 was
0.60, which was significantly lower than that of RMM (P < 0.05).
The distribution of the receptor status of ER, PR, and HER2 in the
patients in VC2, which were incorporated in the clinical model,
was significantly different from that of the PC. This may be the
reason why the clinical model had a poor performance in this
cohort. Previous studies have pointed out that differentmolecular
subtypes could achieve different rates of pCR (5, 7), indicating
that a different distribution of cancer subtypes could mean
different treatment effects and different rates of pCR, hence the
clinical model did not work well on a dataset with a different
patient distribution. As the clinical information may only take
into consideration certain aspects of the tumor, multiparametric
MRI may better reflect all information on the tumor (17). Thus,
when we combined the clinical information and imaging
features for RMM, better performance was achieved. The high-
dimensional imaging features may be able to acquire more
detailed information about the tumor that cannot be detected
easily by the naked eye, including the molecular subtype of
breast cancer, and can more comprehensively describe the tumor
(18, 24).

The eight radiomic features selected for the final multipara-
metric MRI radiomic signature and RMM comprised one feature
fromT1þC, three features fromT2WI, and four features fromADC
(computed with DWI). All eight features were obtained from
Gabor-bank or Law's filtered images, which are high-dimensional
features that cannot be easily deciphered by humans but hold
more detailed information about cancer and are more sensitive
for treatment evaluation. The results suggested that combining
multiple MRI sequences allowed the detection of more detailed
information on the tumor. Although T2WI provided morpho-
logical features of breast cancer, limited information about the
response toNAC could be detected. Recent studies have suggested
that contrast enhanced MRI could be the best tool to predict pCR
to NAC so far (28, 29, 39), and DWI was considered a potential
tool for measuring treatment response in breast cancer (15, 40).
The combinationof T2WI,DWI, andT1þCallows the detectionof
morphological information, water diffusion properties in tissue
(also cellularity and interstitial water mobility from ADC maps),
and permeability of tissue microvessels at the same time. As
multiparametric MRI was successfully applied in treatment
evaluation in patients with rectal cancer recently (26, 41), it is
natural to investigate the performance of multiparametric MRI in

predicting pCR in patients with breast cancer. As expected, RMM
achieved better performance in this multicenter study.

We also found that multiparametric MRI-based radiomic
signature can make good predictions of pCR to NAC for
patients in the HRþ and HER2� subgroup and especially for
patients in the TN subgroup with high AUCs in not only the PC
but also the three external validation cohorts. The prediction
performance was similar to a previous study on patients in the
HRþ and HER2� subgroup, but it did not have external
validation (28). Our results provided additional evidence
supporting the use of MRI in predicting pCR. Although patients
with TN breast cancers usually achieved pCR more frequently,
their response to NAC could be more accurately assessed with
posttreatment MRI (42). We further demonstrated that pre-
treatment multiparametric MRI-based radiomics could more
accurately predict pCR in patients in the TN subgroup. For the
patients in the HER2þ subgroup, the radiomic signature per-
formed well in the PC and VC1 but had decreased AUCs in VC2
and VC3. As some patients who received nonstandard treat-
ment (not treated with trastuzumab) were excluded from the
study, only a small sample of patients with this subtype were
included, which could impact the rate of pCR and prediction in
this subgroup, and also the performance of radiomic signature
decreased in the smaller cohorts of VC2 and VC3 in this
subtype. This could be a limitation of the present study. With
more patients receiving standard treatment, a better prediction
model could be obtained.

There were still some limitations in the study, mainly due to
the limited population size, and the unbalanced patient distri-
bution. Although the proportion of patients who reached pCR in
all four cohorts was in the normal range (7), it was significantly
higher in the dataset fromGuangdongGeneralHospital. Thismay
be due to the administration of standard treatment to patients
withHER2þbreast cancer (trastuzumab in addition to the routine
NAC), as the proportion of patients who reached pCR could be
much higher in patients with HER2þ breast cancer than in
patients with HRþ and HER2� breast cancer (7, 43). Future
studies should enroll more patients to assess the effects of stan-
dard treatment, so that the prediction model could be better
trained. In addition, the model itself should also be further
optimized with better engineering techniques, thereby improving
the overall performance of RMM. The performance of RMM may
also be investigated in patients of different ethnic populations in
the future.

In conclusion, the present preliminary study suggested a
possibility that RMMprovided a potential tool to develop amodel
for predicting pCR to NAC in breast cancer. With further clinical
research, a predictionmodel may be developed with the radiomics
combining multiparametric MRI and clinical information.
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