mitkAmoebaOptimizer Class Reference
mitkAmoebaOptimizer - a concrete class for implementation of the Nelder-Meade downhill simplex algorithm
More...
#include <mitkAmoebaOptimizer.h>
Inherits mitkOptimizer.
Inheritance diagram for mitkAmoebaOptimizer:
[legend]Collaboration diagram for mitkAmoebaOptimizer:
[legend]List of all members.
Detailed Description
mitkAmoebaOptimizer - a concrete class for implementation of the Nelder-Meade downhill simplex algorithm
mitkAmoebaOptimizer - a concrete class for implementation of the Nelder-Meade downhill simplex algorithm. It works by creating a simplex (n+1 points in n-D space) which then crawls about the space searching for the solution.
By default the set of (n+1) starting points are generated by applying a scaling (relative_diameter) to each element of the supplied starting vector, with a small offset used instead if the value is zero.
Alternatively, if one uses minimize(x,dx), then the starting points are obtained by adding each dx[i] to the elements of x, one at a time. This is useful if you know roughly the scale of your space.
Constructor & Destructor Documentation
mitkAmoebaOptimizer::mitkAmoebaOptimizer |
( |
|
) |
|
|
Member Function Documentation
VectorParameterType& mitkAmoebaOptimizer::GetInitialSimplexDelta |
( |
|
) |
|
|
|
Get the pointer to the vector of initialized simplex data. - Returns:
- The pointer to initialized simplex vector.
|
ScalarParameterType mitkAmoebaOptimizer::GetValue |
( |
const VectorParameterType & |
p |
) |
|
|
|
Get the cost function value at the given parameters. - Parameters:
-
| p | The given transform parameters. |
- Returns:
- The cost function value.
|
virtual void mitkAmoebaOptimizer::PrintSelf |
( |
ostream & |
os |
) |
[virtual] |
|
|
Print the necessary information about this object for the debugging purpose. - Parameters:
-
| os | The specified ostream to output information. |
Reimplemented from mitkOptimizer. |
void mitkAmoebaOptimizer::SetAutomaticInitialSimplexFlag |
( |
bool |
flag |
) |
[inline] |
|
|
Set the mode which determines how the amoeba algorithm defines the initial simplex. Default is on. - Parameters:
-
| flag | Automatically initialize simplex if flag is true. |
|
void mitkAmoebaOptimizer::SetFunctionConvergenceTolerance |
( |
ScalarParameterType |
tol |
) |
[inline] |
|
|
Set the cost function convergence threshold. - Parameters:
-
| tol | The function convergence value. |
|
void mitkAmoebaOptimizer::SetInitialSimplexDelta |
( |
ScalarParameterType * |
delta, |
|
|
int |
dim |
|
) |
|
|
|
Define the initial simplex, setting the ith corner of the simplex as [x0[0], x0[1], ..., x0[i]+InitialSimplexDelta[i], ...,* x0[d-1]]. - Parameters:
-
| delta | An array carried initialized simplex data. |
| dim | Parameter space dimensions. |
|
void mitkAmoebaOptimizer::SetParametersConvergenceTolerance |
( |
ScalarParameterType |
tol |
) |
[inline] |
|
|
Set the simplex diameter threshold value, which will terminate optimization algorithm when the simplex diameter and the difference in cost function at the corners of the simplex falls below user specified thresholds. - Parameters:
-
| tol | The simplex convergence tolerance value. |
|
The documentation for this class was generated from the following file:
Generated on Tue Feb 25 15:00:54 2014 for MITK (Medical Imaging ToolKit) by
1.4.3