• 1.  Huang Y, Liang C, He L, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer[J]. Journal of Clinical Oncology, 2016, 34(18): 2157-2164.

        影像组学实现结直肠癌淋巴结转移术前精准预测
  • 10.  Wang K, Lu X, Zhou H, Tian J, et al. Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study.[J]. Gut. 2018 May: doi:10.1136/gutjnl-2018-316204. PMID: 29730602.

        影像组学实现乙肝纤维化程度等同病理的精准诊断
  • 30.  Di Dong, Lei Tang, Ziyu Li, Mengjie Fang, Jianbo Gao, Xiuhong Shan et al. Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer, Annals of Oncology, 2019, 30(3): 431-438.

        影像组学实现胃癌腹膜转移预测
  • 40.  Shuo Wang, Jingyun Shi, Zhaoxiang Ye, Di Dong, Dongdong Yu, Mu Zhou. et al. Predicting EGFR Mutation Status in Lung Adenocarcinoma on CT Image Using Deep Learning, European Respiratory Journal, 2019, 53 (3): 1800986.

        影像组学实现基因突变预测
  • 50.  Hao Peng, Di Dong, Mengjie Fang, Lu Li, Linglong Tang, et al, Prognostic Value of Deep Learning PET/CT-based Radiomics: Potential Role for Future Individual Induction Chemotherapy in Advanced Nasopharyngeal Carcinoma, Clinical Cancer Research, 2019. DOI:10.1158/1078-0432.CCR-18-3065 .

        Prognostic Value of Deep Learning
  • 60.  Jiangdian Song, Jingyun Shi, Di Dong, Mengjie Fang, et al. A new approach to predict progression-free survival in stage IV EGFR-mutant NSCLC patients with EGFR-TKI therapy, Clinical Cancer Research, 2018, 24(15): 3583-3592.

         .
  • 70.  Zhang B, Tian J, Dong D et al. Radiomics features of Multiparametric MRI as Novel Prognostic Factors in Advanced Nasopharyngeal Carcinoma.[J]. Clinical Cancer Research An Official Journal of the American Association for Cancer Research, 2017, 23(15):4259.

        影像组学实现晚期鼻咽癌无进展生存期精准预测
  • 80.  Liu Z, Zhang X Y, Shi Y J, et al. Radiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer.[J]. Clinical Cancer Research, 2017:clincanres.1038.2017.

        影像组学实现局部进展期直肠癌新辅助治疗效果精准评估
  • 90.  Song J, Shi J, Dong D, Fang M, Tian J, et al. A new approach to predict progression-free survival in stage IV EGFR-mutant NSCLC patients with EGFR-TKI therapy.[J]. Clinical Cancer Research, 2018, doi:10.1158/1078-0432.ccr-17-2507.

        影像组学实现晚期EGFR突变非小细胞肺癌TKI治疗耐药时间精准预测
  • 100.  Lu Zhang#, Di Dong#, Hailin Li#, Jie Tian#, Fusheng Ouyang, et al. Development and validation of a magnetic resonance imaging-based model for the prediction of distant metastasis before initial treatment of nasopharyngeal carcinoma: A retrospective cohort study, EBioMedicine, 2019, 40: 327-335.

         .
  • 110.  Guo J, Liu Z, Shen C, et al. MR-based radiomics signature in differentiating ocular adnexal lymphoma from idiopathic orbital inflammation.[J]. European Radiology, 2018:1-10.

        影像组学实现眼眶淋巴瘤和炎性假瘤的无创定量鉴别
  • 120.  Yang L, Dong D, Fang M, et al. Can CT-based radiomics signature predict KRAS/NRAS/BRAF mutations in colorectal cancer?[J]. European Radiology, 2018:1-10.

        影像组学实现结直肠癌KRAS/NRAS/BRAF基因突变精准预测