• 81.  Xiaoxiao Wang#, Cong Li#, Mengjie Fang, Liwen Zhang, Lianzhen Zhong, Di Dong*, Jie Tian*,Xiuhong Shan*,Integrating No.3 lymph nodes and primary tumor radiomics to predict lymph node metastasis in T1‑2 gastric cancer,BMC Medical Imaging, 2021, 21: 58. Published: 23 March 2021. DOI: 10.1186/s12880-021-00587-3.

  • 82.  Jiehua Su#, Lingwei Meng#, Di Dong#, Wenyan Zhuo, Jianming Wang, Libin Liu, Yi Qin, Ye Tian, Jie Tian*, Zhaohui Li*, Noninvasive model for predicting future ischemic strokes in patients with silent lacunar infarction using radiomics, BMC Medical Imaging, 2020, 20: 77. Published: 08 July 2020. DOI: 10.1186/s12880-020-00470-7.

  • 83.  Bei Wang#, Min Li#, He Ma, Fangfang Han, Yan Wang, Shunying Zhao, Zhimin Liu, Tong Yu, Jie Tian, Di Dong*, Yun Peng*, Computed tomography-based predictive nomogram for differentiating primary progressive pulmonary tuberculosis from community-acquired pneumonia in children, BMC Medical Imaging, 2019,19(1): 63. Published: 08 August 2019. DOI: 10.1186/s12880-019-0355-z.

  • 84.  Mengjie Fang, Jie Tian, Di Dong*, Non-invasively predicting response to neoadjuvant chemotherapy in gastric cancer via deep learning radiomics. EClinicalMedicine, 2022, 46: 101380. Published: April 06, 2022. DOI: 10.1016/j.eclinm.2022.101380.

  • 85.  Jing Li#, Mengjie Fang#, Rui Wang, Di Dong, Jie Tian, Pan Liang, Jie Liu, Jianbo Gao*, Diagnostic accuracy of dual-energy CT-based nomograms to predict lymph node metastasis in gastric cancer, European Radiology, 2018, 28(12): 5241–5249. DOI: 10.1007/s00330-018-5483-2.

  • 86.  Shuaitong Zhang#, Guidong Song#, Yali Zang*, Jian Jia, Chao Wang, Chuzhong Li, Jie Tian, Di Dong, Yazhuo Zhang*, Non-invasive radiomics approach potentially predicts non-functioning pituitary adenomas subtypes before surgery, European Radiology, 2018, 28(9): 3692–3701. DOI: 10.1007/s00330-017-5180-6.

  • 87.  Jiliang Ren#, Jie Tian#, Ying Yuan#, Di Dong, Xiaoxia Li, Yiqian Shi, Xiaofeng Tao*, Magnetic resonance imaging based radiomics signature for the preoperative discrimination of stage I-II and III-IV head and neck squamous cell carcinoma, European Journal of Radiology, 106:1-6, 2018. DOI:10.1016/j.ejrad.2018.07.002.

  • 88.  Mengjie Fang#, Bingxi He#, Li Li#, Di Dong, Xin Yang, Cong Li, Lingwei Meng, Lianzhen Zhong, Hailin Li, Hongjun Li*, Jie Tian*, CT radiomics can help screen the coronavirus disease 2019 (COVID-19): a preliminary study, SCIENCE CHINA Information Sciences, 2020, 63(172103):1-8. DOI: 10.1007/s11432-020-2849-3.

  • 89.  Zhang S, Song G, Zang Y, et al. Non-invasive radiomics approach potentially predicts non-functioning pituitary adenomas subtypes before surgery.[J]. European Radiology, 2018:1-10.

        影像组学实现非功能性垂体瘤亚型的精准预测
  • 90.  Tang Z, Liu Z, Li R, et al. Identifying the white matter impairments among ART-naïve HIV patients: a multivariate pattern analysis of DTI data[J]. European Radiology, 2017, 27(10):4153-4162.

        影像组学实现利用HIV患者白质损伤准确鉴别
  • 91.  Shen C, Liu Z, Wang Z, et al. Building CT Radiomics Based Nomogram for Preoperative Esophageal Cancer Patients Lymph Node Metastasis Prediction[J]. Translational Oncology, 2018, 11:815–824.

        影像组学实现食管癌淋巴结转移术前精准预测
  • 92.  Shen C, Liu Z, Guan M, et al. 2D and 3D CT Radiomics Features Prognostic Performance Comparison in Non-Small Cell Lung Cancer[J]. Translational Oncology, 2017, 10(6):886-894.

        证实影像组学2D特征与3D特征预后性能相当